HumanSense:探索多模态推理边界,打造「察言观色会共情」的全模态交互伙伴
HumanSense:探索多模态推理边界,打造「察言观色会共情」的全模态交互伙伴在科幻作品描绘的未来,人工智能不仅仅是完成任务的工具,更是为人类提供情感陪伴与生活支持的伙伴。在实现这一愿景的探索中,多模态大模型已展现出一定潜力,可以接受视觉、语音等多模态的信息输入,结合上下文做出反馈。
在科幻作品描绘的未来,人工智能不仅仅是完成任务的工具,更是为人类提供情感陪伴与生活支持的伙伴。在实现这一愿景的探索中,多模态大模型已展现出一定潜力,可以接受视觉、语音等多模态的信息输入,结合上下文做出反馈。
强化学习能力强大,几乎已经成为推理模型训练流程中的标配,也有不少研究者在探索强化学习可以为大模型带来哪些涌现行为。
在大模型微调实践中,SFT(监督微调)几乎成为主流流程的一部分,被广泛应用于各类下游任务和专用场景。比如,在医疗领域,研究人员往往会用领域专属数据对大模型进行微调,从而显著提升模型在该领域特定任务上的表现。
全球六大LLM实盘厮杀,新王登基!今天,Qwen3 Max凭借一波「快狠准」操作,逆袭DeepSeek夺下第一。Qwen3 Max,一骑绝尘! 而GPT-5则接替Gemini 2.5 Pro,成为「最会赔钱」的AI。照目前这个趋势,估计很快就要跌没了……
啥情况,马斯克在𝕏上直接锐评Claude「邪恶透顶」:这次起因是这样的,最新研究发现,Claude Sonnet 4.5竟然认为尼日利亚人的生命价值是德国人的27倍。具体而言,在面对不同国家的绝症患者时,Claude「清醒」得有点吓人——
短视频的游戏规则,彻底被改写了!9月25日,Meta突然扔出一张新牌——Vibes。刷到的不是别人拍的,而是一条条AI秒生的视频:熊猫骑摩托、猫咪打篮球,你看完还能一键remix,立刻变成你的版本,再发到全网。创作门槛被拉到最低,人人都能拍大片。但这股狂潮,是全民狂欢,还是混乱的开始?
我们被「黑箱」困住了!深度生成模型虽能创造逼真内容,但其内部运作机制如同「黑箱」,潜变量的意义难以捉摸。埃默里大学团队提出LatentExplainer框架,巧妙地将潜在变量转化为易懂解释,大幅提升模型解释质量与可靠性。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练