AI浪潮重塑一切,图形学路在何方?北大陈宝权入主SIGGRAPH执委会,肩负新使命
AI浪潮重塑一切,图形学路在何方?北大陈宝权入主SIGGRAPH执委会,肩负新使命ACM SIGGRAPH新执委正式公布!今年,一共选出3名执委,其中北京大学的陈宝权教授从候选人中脱颖而出,成功当选Director A。
ACM SIGGRAPH新执委正式公布!今年,一共选出3名执委,其中北京大学的陈宝权教授从候选人中脱颖而出,成功当选Director A。
北京大学提出了ReMoMask:一种全新的基于检索增强生成的Text-to-Motion框架。它是一个集成三项关键创新的统一框架:(1)基于动量的双向文本-动作模型,通过动量队列将负样本的尺度与批次大小解耦,显著提高了跨模态检索精度;(2)语义时空注意力机制,在部件级融合过程中强制执行生物力学约束,消除异步伪影;(3)RAG-无分类器引导结合轻微的无条件生成以增强泛化能力。
近日,一项由北京大学、字节跳动 Seed 团队及香港大学联合进行的研究,提出了一种名为「SWE-Swiss」的完整「配方」,旨在高效训练用于解决软件工程问题的 AI 模型。研究团队推出的 32B 参数模型 SWE-Swiss-32B,在权威基准 SWE-bench Verified 上取得了 60.2% 的准确率,在同尺寸级别中达到了新的 SOTA。
孵化自北京大学软件工程研究所的 aiXcoder 正是基于这两个痛点走出差异化路线。团队自 2013 年就开始将深度学习技术应用于代码生成和代码理解领域,持续发表研究成果,并率先将深度学习模型落地为商业产品。
尽管当前的机器人视觉语言操作模型(VLA)展现出一定的泛化能力,但其操作模式仍以准静态的抓取与放置(pick-and-place)为主。相比之下,人类在操作物体时常常采用推动、翻转等更加灵活的方式。若机器人仅掌握抓取,将难以应对现实环境中的复杂任务。
在ACL 2025的颁奖典礼上,由DeepSeek梁文锋作为通讯作者、与北京大学等联合发表的论文荣获最佳论文奖。 这次ACL 2025规模空前,总投稿量达到8360篇,相较于去年的4407篇几乎翻倍,竞争异常激烈 。
近日,由普林斯顿大学牵头,联合清华大学、北京大学、上海交通大学、斯坦福大学,以及英伟达、亚马逊、Meta FAIR 等多家顶尖机构的研究者共同推出了新一代开源数学定理证明模型——Goedel-Prover-V2。
近日由北京大学医学部学科办北京大学计算中心软件工程国家工程研究中心。联合开发的 “医学+X”智能学术探索 Xplore平台正式上线! Xplore是落实北京大学2025“科技创新年”战略规划
在机器人操控领域,实现高频响应与复杂推理的统一,一直是一个重大技术挑战。近期,北京大学与香港中文大学的研究团队联合发布了名为 Fast-in-Slow(FiS-VLA) 的全新双系统视觉 - 语言 - 动作模型。
让机器人学会聪明且快速精准执行,一直是机器人操控领域的难题。为了解决这个问题,香港中文大学、北京大学、智平方和北京智源研究院联合创新性地提出了Fast-in-Slow(FiS-VLA),即一个统一的双系统VLA模型。