
用LLaVA解读数万神经元,大模型竟然自己打开了多模态智能黑盒
用LLaVA解读数万神经元,大模型竟然自己打开了多模态智能黑盒以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
在 Minecraft 中构造一个能完成各种长序列任务的智能体,颇有挑战性。现有的工作利用大语言模型 / 多模态大模型生成行动规划,以提升智能体执行长序列任务的能力。
大语言模型直接理解复杂图结构的新方法来了:
大语言模型(LLM)在各种任务上展示了卓越的性能。然而,受到幻觉(hallucination)的影响,LLM 生成的内容有时会出现错误或与事实不符,这限制了其在实际应用中的可靠性。
AtomThink 是一个包括 CoT 注释引擎、原子步骤指令微调、政策搜索推理的全流程框架,旨在通过将 “慢思考 “能力融入多模态大语言模型来解决高阶数学推理问题。量化结果显示其在两个基准数学测试中取得了大幅的性能增长,并能够轻易迁移至不同的多模态大模型当中。
当前,生成式AI正席卷整个社会,大语言模型(LLMs)在文本(ChatGPT)和图像(DALL-E)生成方面取得了令人惊叹的成就,仅仅依赖零星几个提示词,它们就能生成超出预期的内容
一家总部位于美国加州的初创公司Tilde,正在构建解释器模型,解读模型的推理过程,并通过引导采样动态调整生成策略,提升大语言模型的推理能力和生成精度。相比直接优化提示的提示工程,这一方法展现出更灵活高效的潜力,有望重塑AI交互方式。
让AI来评判AI,即利用大语言模型(LLM)作为评判者,已经成为近半年的Prompt热点领域。这个方向不仅代表了AI评估领域的重要突破,更为正在开发AI产品的工程师们提供了一个全新的思路。
近日,《Mechanical System and Signal Processing》(MSSP)在线发表刊登北航 PHM 团队最新研究成果:基于大语言模型的轴承故障诊断框架(LLM-based Framework for Bearing Fault Diagnosis)。
2022 年,以ChatGPT 大语言模型(LLM)的发布为标志, AI 神经网络的类人学习能力取得了里程碑式的进展,在全球范围内掀起了一股 AI 热潮。