
整合海量公共数据,谷歌开源AI统计学专家DataGemma
整合海量公共数据,谷歌开源AI统计学专家DataGemma准确的统计数据、时效性强的信息,一直是大语言模型产生幻觉的重灾区。谷歌在近日推出了自己筹划已久的大型数据库Data Commons,以及在此基础上诞生的大模型DataGemma。
准确的统计数据、时效性强的信息,一直是大语言模型产生幻觉的重灾区。谷歌在近日推出了自己筹划已久的大型数据库Data Commons,以及在此基础上诞生的大模型DataGemma。
大语言模型(Large Language Models, LLMs)的强大能力推动了 LLM Agent 的迅速发展。围绕增强 LLM Agent 的能力,近期相关研究提出了若干关键组件或工作流。然而,如何将核心要素集成到一个统一的框架中,能够进行端到端优化,仍然是一个亟待解决的问题。
中科大成果,拿下图学习“世界杯”单项冠军! 由中科大王杰教授团队(MIRA Lab)提出的首个具有最优性保证的大语言模型和图神经网络分离训练框架,在国际顶级图学习标准OGB(Open Graph Benchmark)挑战赛的蛋白质功能预测任务上斩获「第一名」,该纪录从2023年9月27日起保持至今。
在医疗领域中,大语言模型已经有了广泛的研究。然而,这些进展主要依赖于英语的基座模型,并受制于缺乏多语言医疗专业数据的限制,导致当前的医疗大模型在处理非英语问题时效果不佳。
视觉数据的种类极其多样,囊括像素级别的图标到数小时的视频。现有的多模态大语言模型(MLLM)通常将视觉输入进行分辨率的标准化或进行动态切分等操作,以便视觉编码器处理。然而,这些方法对多模态理解并不理想,在处理不同长度的视觉输入时效率较低。
扩展多模态大语言模型(MLLMs)的长上下文能力对于视频理解、高分辨率图像理解以及多模态智能体至关重要。这涉及一系列系统性的优化,包括模型架构、数据构建和训练策略,尤其要解决诸如随着图像增多性能下降以及高计算成本等挑战。
大语言模型(LLM)的发展同时往往伴随着硬件加速技术的进化,本文对使用 FPGA、ASIC 等芯片的模型性能、能效表现来了一次全面概览。
大语言模型(如 GPT-4)具备强大的语言处理能力,但其独立运作时仍存在局限性,如无法进行复杂计算,获取不到实时信息,难以提供专业定制化功能等。而大语言模型的工具调用能力使其不仅限于文字处理,更能提供全面、实时、精确的服务,极大地扩展了其应用范围和实际价值。
随着大语言模型的飞速发展,角色扮演智能体(RPAs)正逐渐成为 AI 领域的热门话题。
我向来喜欢折腾新玩意。作为一个语言学习者,AI大语言模型出来以后我没少使用它。无论是备课还是日常工作和学习,大语言模型提供了各种各样的可能性,大大提升了效率。