免训练加速61倍!陈怡然团队新作DPad:仅关注「彩票token」
免训练加速61倍!陈怡然团队新作DPad:仅关注「彩票token」杜克大学团队发现,扩散大语言模型只需关注少量「中奖」token,就能在推理时把速度提升61-97倍,还能让模型更懂格式、更听话。新策略DPad不训练也能零成本挑出关键信息,实现「少算多准」的双赢。
杜克大学团队发现,扩散大语言模型只需关注少量「中奖」token,就能在推理时把速度提升61-97倍,还能让模型更懂格式、更听话。新策略DPad不训练也能零成本挑出关键信息,实现「少算多准」的双赢。
随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视
其实大语言模型的“教育”问题也差不多。研究者在训练和使用这些模型时,离不开提示词。这就像一份人生剧本,告诉模型“你是谁?”“你要做什么?”“你能做到哪里?”但问题是,提示词到底应该像家长一样,
最近,美团在AI开源赛道上在猛踩加速。今天,在开源其首款大语言模型仅仅24天后,美团又开源了其首款自研推理模型LongCat-Flash-Thinking。与其基础模型LongCat-Flash类似,效率也是LongCat-Flash-Thinking的最大特点。美团在技术报告中透露,LongCat-Flash-Thinking在自研的DORA强化学习基础设施完成训练
9 月 22 日下午,联发科推出的新一代旗舰 5G 智能体 AI 芯片 —— 天玑 9500,并展示了一系列新形态端侧的 AI 应用,在公众层面首次推动端侧 AI 从尝鲜到好用。现在,让手机端大语言模型(LLM)处理一段超长的文本,最长支持 128K 字元,它只需要两秒就能总结出会议纪要,AI 还能自动修改你的错别字。
近年来,大语言模型(LLMs)在复杂推理任务上的能力突飞猛进,这在很大程度上得益于深度思考的策略,即通过增加测试时(test-time)的计算量,让模型生成更长的思维链(Chain-of-Thought)。
本周,我们关注 Agent 与工业结合正在发生的变化,我们邀请研发时序大模型 Geegobyte-g1 以及工业智能体平台「河谷」的初创企业极峰科技的创始人王筱圃,和我们聊一聊什么是时序大模型,和大语言模型的区别和具体的案例,他们如何训练一个 Agent 并把它卖给企业投入到生产流程中。希望能对大家了解 AI Agent 如何应用于工业生产有所帮助。
幻觉不是 bug,是数学上的宿命。 谢菲尔德大学的最新研究证明,大语言模型的幻觉问题在数学上不可避免—— 即使用完美的训练数据也无法根除。 而更为扎心的是,OpenAI 提出的置信度阈值方案虽能减少幻
只用 1.5% 的内存预算,性能就能超越使用完整 KV cache 的模型,这意味着大语言模型的推理成本可以大幅降低。EvolKV 的这一突破为实际部署中的内存优化提供了全新思路。
训练、推理性价比创新高。 大语言模型(LLM),正在进入 Next Level。 周五凌晨,阿里通义团队正式发布、开源了下一代基础模型架构 Qwen3-Next。总参数 80B 的模型仅激活 3B ,性能就可媲美千问 3 旗舰版 235B 模型,也超越了 Gemini-2.5-Flash-Thinking,实现了模型计算效率的重大突破。