
离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞
离职OpenAI后Lilian Weng博客首发!深扒RL训练漏洞,业内狂赞Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。
来自主题: AI资讯
7118 点击 2024-12-06 09:54
Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。
CGPO框架通过混合评审机制和约束优化器,有效解决了RLHF在多任务学习中的奖励欺骗和多目标优化问题,显著提升了语言模型在多任务环境中的表现。CGPO的设计为未来多任务学习提供了新的优化路径,有望进一步提升大型语言模型的效能和稳定性。