
大模型狙击黑产:挚文集团社交生态攻防实战全揭秘
大模型狙击黑产:挚文集团社交生态攻防实战全揭秘在 InfoQ 举办的 AICon 全球人工智能开发与应用大会上摯文集团生态技术负责人李波做了专题演讲“大模型在社交生态领域的落地实践”,演讲从摯文集团实际的生态问题出发,从多模态大模型如何进行对抗性生态内容理解、如何进行细粒度用户性质判定,以及如何进行人机协同降本提效等方向展开。
在 InfoQ 举办的 AICon 全球人工智能开发与应用大会上摯文集团生态技术负责人李波做了专题演讲“大模型在社交生态领域的落地实践”,演讲从摯文集团实际的生态问题出发,从多模态大模型如何进行对抗性生态内容理解、如何进行细粒度用户性质判定,以及如何进行人机协同降本提效等方向展开。
SuperCLUE-Fact是专门评估大语言模型在中文短问答中识别和应对事实性幻觉的测试基准。测评任务包括知识、常识、对抗性和上下文幻觉。
扩散模型(Diffusion Models, DMs)已经成为文本到图像生成领域的核心技术之一。凭借其卓越的性能,这些模型可以生成高质量的图像,广泛应用于各类创作场景,如艺术设计、广告生成等。
当地时间5月7日,ICLR 2024颁发了自大会举办以来的首个「时间检验奖」!
EdgeNet可以处理从干净的自然图像或嘈杂的对抗性图像中提取的边缘,产生鲁棒的特征,具有轻量级、即插即用等特点,能够无缝集成到现有的预训练深度网络中,训练成本低。
大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
神经网络由于自身的特点而容易受到对抗性攻击,然而,谷歌DeepMind的最新研究表明,我们人类的判断也会受到这种对抗性扰动的影响