重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」
重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。
在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。
随着文图生成模型的广泛应用,模型本身有限的安全防护机制使得用户有机会无意或故意生成有害的图片内容,并且该内容有可能会被恶意使用。现有的安全措施主要依赖文本过滤或概念移除的策略,只能从文图生成模型的生成能力中移除少数几个概念。
当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。
具身智能是近年来非常火概念。一个智能体(比如人)能够在环境中完成感知、理解与决策的闭环,并通过环境反馈不断进入新一轮循环,直至任务完成。这一过程往往依赖多种技能,涵盖了底层视觉对齐,空间感知,到上层决策的不同能力,这些能力便是广义上的具身智能。
3D点云异常检测对制造、打印等领域至关重要,可传统方法常丢细节、难修复。上海科大与密歇根大学携手打造PASDF框架,借助「姿态对齐+连续表征」技术,达成检测修复一体化,实验显示其精准又稳定。
近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
尽管视觉语言模型(LVLMs)在图像与短视频理解中已取得显著进展,但在处理长时序、复杂语义的视频内容时仍面临巨大挑战 —— 上下文长度限制、跨模态对齐困难、计算成本高昂等问题制约着其实际应用。针对这一难题,厦门大学、罗切斯特大学与南京大学联合提出了一种轻量高效、无需微调的创新框架 ——Video-RAG。
大模型强化学习总是「用力过猛」?Scale AI联合UCLA、芝加哥大学的研究团队提出了一种基于评分准则(rubric)的奖励建模新方法,从理论和实验两个维度证明:要想让大模型对齐效果好,关键在于准确区分「优秀」和「卓越」的回答。这项研究不仅揭示了奖励过度优化的根源,还提供了实用的解决方案。
一张图片包含的信息是多维的。例如下面的图 1,我们至少可以得到三个层面的信息:主体是大象,数量有两头,环境是热带稀树草原(savanna)。然而,如果由传统的表征学习方法来处理这张图片,比方说就将其送入一个在 ImageNet 上训练好的 ResNet 或者 Vision Transformer,往往得到的表征只会体现其主体信息,也就是会简单地将该图片归为大象这一类别。这显然是不合理的。