AI资讯新闻榜单内容搜索-对齐

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 对齐
重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

重新定义跨模态生成的流匹配范式,VAFlow让视频「自己发声」

在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。

来自主题: AI技术研报
6919 点击    2025-10-31 15:00
ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

ICCV 2025 | 港科、牛津大学发布AlignGuard,文图生成模型可规模化安全对齐框架

随着文图生成模型的广泛应用,模型本身有限的安全防护机制使得用户有机会无意或故意生成有害的图片内容,并且该内容有可能会被恶意使用。现有的安全措施主要依赖文本过滤或概念移除的策略,只能从文图生成模型的生成能力中移除少数几个概念。

来自主题: AI技术研报
8945 点击    2025-10-30 17:01
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
6825 点击    2025-10-30 10:55
大模型在具身推理上「翻车」了?4496 道题全面揭示短板

大模型在具身推理上「翻车」了?4496 道题全面揭示短板

大模型在具身推理上「翻车」了?4496 道题全面揭示短板

具身智能是近年来非常火概念。一个智能体(比如人)能够在环境中完成感知、理解与决策的闭环,并通过环境反馈不断进入新一轮循环,直至任务完成。这一过程往往依赖多种技能,涵盖了底层视觉对齐,空间感知,到上层决策的不同能力,这些能力便是广义上的具身智能。

来自主题: AI技术研报
5807 点击    2025-10-28 13:44
超94%类别第一!3D点云异常检测与修复新SOTA | ICCV'25

超94%类别第一!3D点云异常检测与修复新SOTA | ICCV'25

超94%类别第一!3D点云异常检测与修复新SOTA | ICCV'25

3D点云异常检测对制造、打印等领域至关重要,可传统方法常丢细节、难修复。上海科大与密歇根大学携手打造PASDF框架,借助「姿态对齐+连续表征」技术,达成检测修复一体化,实验显示其精准又稳定。

来自主题: AI技术研报
6444 点击    2025-10-28 09:34
NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。

来自主题: AI技术研报
5368 点击    2025-10-26 10:28
一个指令误导智能模型!北航等首创3D语义攻击框架,成功率暴涨119%

一个指令误导智能模型!北航等首创3D语义攻击框架,成功率暴涨119%

一个指令误导智能模型!北航等首创3D语义攻击框架,成功率暴涨119%

人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。

来自主题: AI资讯
6767 点击    2025-10-23 16:00
轻量高效,即插即用:Video-RAG为长视频理解带来新范式

轻量高效,即插即用:Video-RAG为长视频理解带来新范式

轻量高效,即插即用:Video-RAG为长视频理解带来新范式

尽管视觉语言模型(LVLMs)在图像与短视频理解中已取得显著进展,但在处理长时序、复杂语义的视频内容时仍面临巨大挑战 —— 上下文长度限制、跨模态对齐困难、计算成本高昂等问题制约着其实际应用。针对这一难题,厦门大学、罗切斯特大学与南京大学联合提出了一种轻量高效、无需微调的创新框架 ——Video-RAG。

来自主题: AI技术研报
6438 点击    2025-10-22 14:57
RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

RL微调,关键在前10%奖励!基于评分准则,Scale AI等提出新方法

大模型强化学习总是「用力过猛」?Scale AI联合UCLA、芝加哥大学的研究团队提出了一种基于评分准则(rubric)的奖励建模新方法,从理论和实验两个维度证明:要想让大模型对齐效果好,关键在于准确区分「优秀」和「卓越」的回答。这项研究不仅揭示了奖励过度优化的根源,还提供了实用的解决方案。

来自主题: AI技术研报
7291 点击    2025-10-17 09:48
NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

一张图片包含的信息是多维的。例如下面的图 1,我们至少可以得到三个层面的信息:主体是大象,数量有两头,环境是热带稀树草原(savanna)。然而,如果由传统的表征学习方法来处理这张图片,比方说就将其送入一个在 ImageNet 上训练好的 ResNet 或者 Vision Transformer,往往得到的表征只会体现其主体信息,也就是会简单地将该图片归为大象这一类别。这显然是不合理的。

来自主题: AI技术研报
6625 点击    2025-10-16 14:43