
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
深夜11点,某AI软件陪聊群才真正热闹起来。短短一个小时,陆续有几十个新账号进群。根据群公告介绍,上述软件还在内测阶段,但依然能通过链接下载试玩。众多AI驱动应用程序不仅能进行全天候的情感交流,还能满足用户的个性需求。大厂等也在切入这个赛道,如百度于近期低调推出情感陪伴类App“月匣”,主打高自由度AI对话与沉浸式剧本互动两大核心功能。
“我的面试官是AI”“用AI助手找工作”……今年,第一批春招的年轻人发现,AI在招聘中被应用得如火如荼。
在春节的 DeepSeek 大热后,大模型也更多走进了大家的生活。我们越来越多看到各种模型在静态的做题榜单击败人类,解决各种复杂推理问题。但这些静态的测试与模型在现实中的应用还相去甚远。模型除了能进行对话,还在许多更复杂的场景中以各种各样的方式与人类产生互动。除了对话任务外,如何实现大模型与人的实时同步交互协作越来越重要。
3 月 18 日上午,字节跳动豆包大模型部门(Seed)召开全员会,由负责模型应用相关工作的朱文佳,与新近加入的负责 AI 基础研究探索工作的吴永辉共同主持。两人谈到了未来的目标,明确 Seed 部门的最重要目标是探索智能上限;同时强调进一步加强组织文化,提高技术开放程度,并考虑推进开源。
在一轮轮 AI 基础建设起来之后,目前率先卷起来的应用场景,是「深度研究」。
不惧检验,全程线下公开及全球真机实时直播展示,「慧思开物」填补具身智能在通用软件系统方面的空白,颠覆传统机器人应用开发模式,宣告通用具身智能时代的里程碑突破,具身智能「安卓」时刻已经到来,通向通用具身智能时代的「虫洞」已打开。
用户量 ≠ 变现能力,AI 应用商业模式逐渐成熟。MAU 和收入最高的 50 款移动 AI 应用仅 40% 交叉,部分低用户量应用反而变现能力更强。语言学习、植物识别、音乐工具等小众垂类 AI 应用,凭借精准需求吸引愿意付费的用户群体。
角色扮演 AI(Role-Playing Language Agents,RPLAs)作为大语言模型(LLM)的重要应用,近年来获得了广泛关注。
长文本任务是当下大模型研究的重点之一。在实际场景和应用中,普遍存在大量长序列(文本、语音、视频等),有些甚至长达百万级 tokens。