
OpenAI o1「作弊」修改系统,强行击败专业象棋AI!全程无需提示
OpenAI o1「作弊」修改系统,强行击败专业象棋AI!全程无需提示在与专用国际象棋引擎Stockfish测试中,只因提示词中包含能力「强大」等形容词,o1-preview入侵测试环境,直接修改比赛数据,靠「作弊」拿下胜利。这种现象,表明AI安全任重道远。
在与专用国际象棋引擎Stockfish测试中,只因提示词中包含能力「强大」等形容词,o1-preview入侵测试环境,直接修改比赛数据,靠「作弊」拿下胜利。这种现象,表明AI安全任重道远。
在人工智能领域,大语言模型(LLM)的应用已经渗透到创意写作的方方面面。
在大语言模型(LLM)蓬勃发展的今天,提示词工程(Prompt Engineering)已经成为AI应用开发中不可或缺的关键环节。
为了优化小模型的提示词,我们不得不求助于计算成本高昂的大模型。这种依赖不仅增加了开发成本,还限制了小模型的应用场景。
PromptWizard (PW) 旨在自动化和简化提示优化。它将 LLM 的迭代反馈与高效的探索和改进技术相结合,在几分钟内创建高效的prompts。
AI 生图工具,已经多得泛滥了,但 Google 最新推出的 Whisk,还是找到了一种很新的玩法,让见过世面的网友也直呼好玩。
大语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,但在需要多步推理的复杂任务中仍面临严峻挑战。
大语言模型(LLM)在自然语言处理领域取得了巨大突破,但在复杂推理任务上仍面临着显著挑战。现有的Chain-of-Thought(CoT)和Tree-of-Thought(ToT)等方法虽然通过分解问题或结构化提示来增强推理能力,但它们通常只进行单次推理过程,无法修正错误的推理路径,这严重限制了推理的准确性。
LLM 强大的语言能力,使其被广泛部署于 LLM 应用系统(LLM-integrated applications)中。此时,LLM 需要访问外部数据(如文件,网页,API 返回值)来完成任务。
在当前大语言模型(LLM)的应用生态中,函数调用能力(Function Calling)已经成为一项不可或缺的核心能力。