
自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新
自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
来自主题: AI技术研报
4882 点击 2025-02-28 10:11
本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
一直以来,学术与实际产品的 Prompt 完全脱节,真实场景下,很多产品都聚焦情感陪伴,文案生成等开放任务里。而学术上这些任务没有明确的指标,无法量化也就没办法被比较,于是绝大部分的 Prompt 优化工作都聚焦在“刷榜”,例如怎么提升一个模型的代码/数学能力。我们今天跑的项目叫 SPO,具体什么意思并不重要,重要的是它把之前的所有问题全部解决了。