
Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化
Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。
最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。
在 AI 工具风靡开发圈之前,一批经验丰富的资深程序员,对它们始终保持警惕。这些人,包括 Flask 作者 Armin Ronacher(17 年开发经验)、PSPDFKit 创始人 Peter Steinberger(17 年 iOS 和 macOS 开发经验),以及 Django 联合作者 Simon Willison(25 年编程经验)。然而,就在今年,他们的看法都发生了根本转变。
根据 Menlo Ventures 最新发布的《2025 年消费者 AI 现状报告》,全球已有 18 亿用户使用 AI 产品,付费转化率 3% 左右。行业领头羊 ChatGPT ,拥有 8 亿月活用户,付费转化率约 5%。C 端场景基数大且有一定的付费转化率,部分产品商业化渐入佳境。
想象一下,凌晨三点你被电话吵醒,公司的核心系统彻底崩溃,数十万用户无法正常使用服务,每分钟损失数万美元。你和 50 个工程师挤在一个 Slack 紧急群里,面对着成千上万条日志、指标和报警,却根本找不到问题的根源。
本文第一作者是上海交通大学计算机学院三年级博士生程彭洲,研究方向为多模态大模型推理、AI Agent、Agent 安全等。通讯作者为张倬胜助理教授和刘功申教授。
自从 Transformer 问世,NLP 领域发生了颠覆性变化。大语言模型极大提升了文本理解与生成能力,成为现代 AI 系统的基础。而今,AI 正不断向前,具备自主决策和复杂交互能力的新一代 AI Agent 也正加速崛起。
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
刚刚,由上海交通大学人工智能学院Agents团队提出的AI专家智能体,在OpenAI权威基准测试MLE-bench中击败了业界AI顶流微软,夺冠登顶!
大家好,我是袋鼠帝 说实话,一直以来,都在探索如何用我制作的AI Agent(智能)体变现 我之前大多数的Agent成交都是在微信私域里面。
中科院自动化所提出DipLLM,这是首个在复杂策略游戏Diplomacy中基于大语言模型微调的智能体框架,仅用Cicero 1.5%的训练数据就实现超越