
7B超越GPT!1/20数据,无需知识蒸馏,马里兰等推出全新视觉推理方法
7B超越GPT!1/20数据,无需知识蒸馏,马里兰等推出全新视觉推理方法通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
芯片设计是现代科技的核心,逻辑优化(Logic Optimization, LO)作为芯片设计流程中的关键环节,其效率直接影响着芯片设计的整体性能。
本文探讨基于树搜索的大语言模型推理过程中存在的「过思考」与「欠思考」问题,并提出高效树搜索框架——Fetch。本研究由腾讯 AI Lab 与厦门大学、苏州大学研究团队合作完成。
把扩散模型的生成能力与 MCTS 的自适应搜索能力相结合,会是什么结果?
尽管多模态大语言模型(MLLM)在简单任务上最近取得了显著进展,但在复杂推理任务中表现仍然不佳。费曼的格言可能是这种现象的完美隐喻:只有掌握推理过程的每一步,才能真正解决问题。然而,当前的 MLLM 更擅长直接生成简短的最终答案,缺乏中间推理能力。本篇文章旨在开发一种通过学习创造推理过程中每个中间步骤直至最终答案的 MLLM,以实现问题的深入理解与解决。
北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
通过算法层面的创新,未来大语言模型做数学题的水平会不断地提高。
最近谷歌DeepMind的CEO Hassabis接受了多个播客主播的专访,向大众透露很多谷歌最近发布模型的内幕,以及他理解的如何通向AGI的道路。