AI资讯新闻榜单内容搜索-框架

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 框架
现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳

现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳

现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳

关于产业进展,代码辅助工具,PearAI ,https://trypear.ai/,提供了代码自动生成、智能代码预测、代码编辑聊天、代码记忆提升、智能代码搜索等功能,还内置了Perplexity、Memo等其他AI工具,这其实加剧了如cursor等同质产品的竞争。

来自主题: AI技术研报
9001 点击    2024-11-21 09:50
突破无规则稀疏计算边界,编译框架CROSS数倍提升模型性能

突破无规则稀疏计算边界,编译框架CROSS数倍提升模型性能

突破无规则稀疏计算边界,编译框架CROSS数倍提升模型性能

在现代 AI 模型的快速迭代中,如何在保持模型精度的同时提升计算效率成为关键课题。尤其在大规模 AI 推理中,非结构化稀疏矩阵的计算效率低下成为难以突破的瓶颈。面对这一挑战,我们自主研发了 CROSS—— 一种创新的端到端稀疏编译优化方案,为 AI 推理带来细粒度稀疏计算的加速效果。

来自主题: AI技术研报
6075 点击    2024-11-18 09:01
NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。

来自主题: AI技术研报
3054 点击    2024-11-16 15:21
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅

用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅

用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅

大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。

来自主题: AI资讯
6666 点击    2024-11-15 10:34
一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

如何更好地设计提示词(Prompt)一直是大家关注的焦点。最近,一个独特的研究视角引起了广泛关注:将LLMs视为“演员”,将提示词视为“剧本”,将模型输出视为“表演”。

来自主题: AI技术研报
3198 点击    2024-11-13 14:19
用LLM一键生成百万级领域知识图谱!中科大新框架入选ACL 2024

用LLM一键生成百万级领域知识图谱!中科大新框架入选ACL 2024

用LLM一键生成百万级领域知识图谱!中科大新框架入选ACL 2024

现在,用LLM一键就能生成百万级领域知识图谱了?! 来自中科大MIRA实验室研究人员提出一种通用的自动化知识图谱构建新框架SAC-KG

来自主题: AI技术研报
3021 点击    2024-11-11 21:21
两位本科生一作,首次提出「持续学习」+「少样本」知识图谱补全 | CIKM 2024

两位本科生一作,首次提出「持续学习」+「少样本」知识图谱补全 | CIKM 2024

两位本科生一作,首次提出「持续学习」+「少样本」知识图谱补全 | CIKM 2024

上海大学本科生研发的新框架能有效应对知识图谱补全中的灾难性遗忘和少样本学习难题,提升模型在动态环境和数据稀缺场景下的应用能力。这项研究不仅推动了领域发展,也为实际应用提供了宝贵参考。

来自主题: AI技术研报
2813 点击    2024-11-11 14:57
NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

该文章的第一作者陈麒光,目前就读于哈工大赛尔实验室。他的主要研究方向包括大模型思维链、跨语言大模型等。 该研究主要提出了推理边界框架(Reasoning Boundary Framework, RBF),首次尝试量化并优化思维链推理能力。

来自主题: AI技术研报
3555 点击    2024-11-10 13:50