
现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳
现有RAG框架非完全总结:7个GraphRAG+17个传统RAG框架归纳关于产业进展,代码辅助工具,PearAI ,https://trypear.ai/,提供了代码自动生成、智能代码预测、代码编辑聊天、代码记忆提升、智能代码搜索等功能,还内置了Perplexity、Memo等其他AI工具,这其实加剧了如cursor等同质产品的竞争。
关于产业进展,代码辅助工具,PearAI ,https://trypear.ai/,提供了代码自动生成、智能代码预测、代码编辑聊天、代码记忆提升、智能代码搜索等功能,还内置了Perplexity、Memo等其他AI工具,这其实加剧了如cursor等同质产品的竞争。
我们即将介绍的 AgileGen— 一种基于人机协作的敏捷生成式软件开发框架。
在现代 AI 模型的快速迭代中,如何在保持模型精度的同时提升计算效率成为关键课题。尤其在大规模 AI 推理中,非结构化稀疏矩阵的计算效率低下成为难以突破的瓶颈。面对这一挑战,我们自主研发了 CROSS—— 一种创新的端到端稀疏编译优化方案,为 AI 推理带来细粒度稀疏计算的加速效果。
本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。
大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
如何更好地设计提示词(Prompt)一直是大家关注的焦点。最近,一个独特的研究视角引起了广泛关注:将LLMs视为“演员”,将提示词视为“剧本”,将模型输出视为“表演”。
现在,用LLM一键就能生成百万级领域知识图谱了?! 来自中科大MIRA实验室研究人员提出一种通用的自动化知识图谱构建新框架SAC-KG
上海大学本科生研发的新框架能有效应对知识图谱补全中的灾难性遗忘和少样本学习难题,提升模型在动态环境和数据稀缺场景下的应用能力。这项研究不仅推动了领域发展,也为实际应用提供了宝贵参考。
一个5月份完成训练的大模型,无法对《黑神话·悟空》游戏内容相关问题给出准确回答。
该文章的第一作者陈麒光,目前就读于哈工大赛尔实验室。他的主要研究方向包括大模型思维链、跨语言大模型等。 该研究主要提出了推理边界框架(Reasoning Boundary Framework, RBF),首次尝试量化并优化思维链推理能力。