AI资讯新闻榜单内容搜索-框架

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 框架
英伟达提出首个Mamba-Transformer视觉骨干网络!打破精度/吞吐瓶颈 | CVPR 2025

英伟达提出首个Mamba-Transformer视觉骨干网络!打破精度/吞吐瓶颈 | CVPR 2025

英伟达提出首个Mamba-Transformer视觉骨干网络!打破精度/吞吐瓶颈 | CVPR 2025

CVPR 2025,混合新架构MambaVision来了!Mamba+Transformer混合架构专门为CV应用设计。MambaVision 在Top-1精度和图像吞吐量方面实现了新的SOTA,显著超越了基于Transformer和Mamba的模型。

来自主题: AI技术研报
9416 点击    2025-03-08 13:10
CVPR 2025|北大开源多模态驱动的定制化漫画生成框架DiffSensei,还有4.3万页漫画数据集

CVPR 2025|北大开源多模态驱动的定制化漫画生成框架DiffSensei,还有4.3万页漫画数据集

CVPR 2025|北大开源多模态驱动的定制化漫画生成框架DiffSensei,还有4.3万页漫画数据集

北京大学、上海人工智能实验室、南洋理工大学联合推出 DiffSensei,首个结合多模态大语言模型(MLLM)与扩散模型的定制化漫画生成框架。该框架通过创新的掩码交叉注意力机制与文本兼容的角色适配器,实现了对多角色外观、表情、动作的精确控制

来自主题: AI技术研报
10388 点击    2025-03-07 14:15
开启空间智能问答新时代:Spatial-RAG框架来了

开启空间智能问答新时代:Spatial-RAG框架来了

开启空间智能问答新时代:Spatial-RAG框架来了

当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。

来自主题: AI技术研报
7163 点击    2025-03-07 10:34
谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

Agent这两天随着邀请码进入公众视野,展示了不凡的推理能力。然而,当面对需要精确规划和深度推理的复杂问题时,即使是最先进的LLMs也常常力不从心。Google研究团队提出的PlanGEN框架,正是为解决这一挑战而生。

来自主题: AI技术研报
4415 点击    2025-03-06 16:55
有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

随着R1等先进推理模型展现出接近人类的推理能力,多代理系统(Multi-Agent Systems,MAS)的发展也出现了前所未有的机遇。然而,随着我们尝试构建越来越复杂的多代理系统,一个核心问题日益凸显:如何在保持系统灵活性的同时,降低开发和维护的复杂度?

来自主题: AI技术研报
8831 点击    2025-03-04 16:12
欧盟AI办公室将举办通用目的人工智能系统性风险评估最佳实践

欧盟AI办公室将举办通用目的人工智能系统性风险评估最佳实践

欧盟AI办公室将举办通用目的人工智能系统性风险评估最佳实践

欧盟AI办公室将于2025年4月28日在布鲁塞尔举办一场重要的线下研讨会,旨在探讨通用目的人工智能(GPAI)系统性风险评估的最佳实践。本次研讨会是欧盟AI治理框架中的一个重要里程碑,反映了欧盟在AI安全、透明度和合规性方面的持续努力。

来自主题: AI资讯
6544 点击    2025-03-03 15:16
LLM「啊哈时刻」竟会自我纠正,单体数学性能暴涨!UIUC华人一作

LLM「啊哈时刻」竟会自我纠正,单体数学性能暴涨!UIUC华人一作

LLM「啊哈时刻」竟会自我纠正,单体数学性能暴涨!UIUC华人一作

LLM在推理任务中表现惊艳,却在自我纠正上的短板却一直令人头疼。UIUC联手马里兰大学全华人团队提出一种革命性的自我奖励推理框架,将生成、评估和纠正能力集成于单一LLM,让模型像人类一样「边想边改」,无需外部帮助即可提升准确性。

来自主题: AI技术研报
8354 点击    2025-03-03 10:28