
揭秘LLM“思考”之谜:推理即“梯度下降”,元学习框架解构训练过程,还给优化提供新思路
揭秘LLM“思考”之谜:推理即“梯度下降”,元学习框架解构训练过程,还给优化提供新思路近年来,大语言模型(LLM)以其卓越的文本生成和逻辑推理能力,深刻改变了我们与技术的互动方式。然而,这些令人瞩目的表现背后,LLM的内部机制却像一个神秘的“黑箱”,让人难以捉摸其决策过程。
来自主题: AI技术研报
5362 点击 2025-06-11 14:29
近年来,大语言模型(LLM)以其卓越的文本生成和逻辑推理能力,深刻改变了我们与技术的互动方式。然而,这些令人瞩目的表现背后,LLM的内部机制却像一个神秘的“黑箱”,让人难以捉摸其决策过程。
无监督学习训练整数规划求解器的新范式来了。
过去十年间,基于随机梯度下降(SGD)的深度学习模型在许多领域都取得了极大的成功。与此同时各式各样的 SGD 替代品也如雨后春笋般涌现。在这些众多替代品中,Adam 及其变种最受追捧。无论是 SGD,还是 Adam,亦或是其他优化器,最核心的超参数非 Learning rate 莫属。因此如何调整好 Leanring rate 是炼丹师们从一开始就必学的技能。
4年前的开源项目突然在Hacker News爆火,通过可视化的「小球下山」,帮助非专业和专业人士,更好地理解AI训练中梯度下降的过程。