
月收入暴涨410%,半年积累超1200万用户,国产视频模型崛起,狂卷AI生成
月收入暴涨410%,半年积累超1200万用户,国产视频模型崛起,狂卷AI生成如今,AI爆发趋势势不可挡,从去年开始,内容生成领域就备受瞩目,无论是文生还是图生,都让创作变得轻而易举,也让更多的非原专业人士能够参与其中,体验用极短的时间制作出心仪的内容。
如今,AI爆发趋势势不可挡,从去年开始,内容生成领域就备受瞩目,无论是文生还是图生,都让创作变得轻而易举,也让更多的非原专业人士能够参与其中,体验用极短的时间制作出心仪的内容。
DeepSeek的V3模型仅用557.6万的训练成本,实现了与OpenAI O1推理模型相近的性能,这在全球范围内引发连锁反应。由于不用那么先进的英伟达芯片就能实现AI能力的飞跃,英伟达在1月27日一天跌幅高达17%,市值一度蒸发6000亿美元。
近日有媒体报道称,李飞飞等斯坦福大学和华盛顿大学的研究人员以不到50美元的云计算费用,成功训练出了一个名为s1的人工智能推理模型。
各位同学好,我是来自 Unlock-DeepSeek 开源项目团队的骆师傅。先说结论,我们(Datawhale X 似然实验室)使用 3 张 A800(80G) 计算卡,花了 20 小时训练时间,做出了可能是国内首批 DeepSeek R1 Zero 的中文复现版本,我们把它叫做 Datawhale-R1,用于 R1 Zero 复现教学。
阿里系第一个吃上DeepSeek“螃蟹”的出现了——钉钉:已经全面接入DeepSeek系列模型。现在,用户在钉钉上创建AI助理的时候,可以直接选择DeepSeek系列的R1、V3等三种模型!
自 DeepSeek-R1 发布以来,群组相对策略优化(GRPO)因其有效性和易于训练而成为大型语言模型强化学习的热门话题。R1 论文展示了如何使用 GRPO 从遵循 LLM(DeepSeek-v3)的基本指令转变为推理模型(DeepSeek-R1)。
尽管多模态大语言模型(MLLM)在简单任务上最近取得了显著进展,但在复杂推理任务中表现仍然不佳。费曼的格言可能是这种现象的完美隐喻:只有掌握推理过程的每一步,才能真正解决问题。然而,当前的 MLLM 更擅长直接生成简短的最终答案,缺乏中间推理能力。本篇文章旨在开发一种通过学习创造推理过程中每个中间步骤直至最终答案的 MLLM,以实现问题的深入理解与解决。
SANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。
新一代 Kaldi 团队是由 Kaldi 之父、IEEE fellow、小米集团首席语音科学家 Daniel Povey 领衔的团队,专注于开源语音基础引擎研发,从神经网络声学编码器、损失函数、优化器和解码器等各方面重构语音技术链路,旨在提高智能语音任务的准确率和效率。
一项非常鼓舞人心的发现是:DeepSeek-R1-Zero 通过纯强化学习(RL)实现了「顿悟」。在那个瞬间,模型学会了自我反思等涌现技能,帮助它进行上下文搜索,从而解决复杂的推理问题。