AI资讯新闻榜单内容搜索-模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: 模型
类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

图文大模型通常采用「预训练 + 监督微调」的两阶段范式进行训练,以强化其指令跟随能力。受语言领域的启发,多模态偏好优化技术凭借其在数据效率和性能增益方面的优势,被广泛用于对齐人类偏好。目前,该技术主要依赖高质量的偏好数据标注和精准的奖励模型训练来提升模型表现。然而,这一方法不仅资源消耗巨大,训练过程仍然极具挑战。

来自主题: AI技术研报
9031 点击    2025-04-08 14:18
用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。

来自主题: AI技术研报
1696 点击    2025-04-08 08:50
CLIP被淘汰了?LeCun谢赛宁新作,多模态训练无需语言监督更强!

CLIP被淘汰了?LeCun谢赛宁新作,多模态训练无需语言监督更强!

CLIP被淘汰了?LeCun谢赛宁新作,多模态训练无需语言监督更强!

LeCun谢赛宁等研究人员通过新模型Web-SSL验证了SSL在多模态任务中的潜力,证明其在扩展模型和数据规模后,能媲美甚至超越CLIP。这项研究为无语言监督的视觉预训练开辟新方向,并计划开源模型以推动社区探索。

来自主题: AI技术研报
6864 点击    2025-04-07 15:09
铰链物体的通用世界模型,超越扩散方法,入选CVPR 2025

铰链物体的通用世界模型,超越扩散方法,入选CVPR 2025

铰链物体的通用世界模型,超越扩散方法,入选CVPR 2025

基于当前观察,预测铰链物体的的运动,尤其是 part-level 级别的运动,是实现世界模型的关键一步。

来自主题: AI技术研报
8183 点击    2025-04-07 15:03
LLM幻觉,竟因知识「以大欺小」!华人团队祭出对数线性定律与CoDA策略

LLM幻觉,竟因知识「以大欺小」!华人团队祭出对数线性定律与CoDA策略

LLM幻觉,竟因知识「以大欺小」!华人团队祭出对数线性定律与CoDA策略

来自UIUC等大学的华人团队,从LLM的基础机制出发,揭示、预测并减少幻觉!通过实验,研究人员揭示了LLM的知识如何相互影响,总结了幻觉的对数线性定律。更可预测、更可控的语言模型正在成为现实。

来自主题: AI技术研报
6904 点击    2025-04-07 14:55