
在GSM8K上比GRPO快8倍!厦大提出CPPO,让强化学习快如闪电
在GSM8K上比GRPO快8倍!厦大提出CPPO,让强化学习快如闪电DeepSeek-R1 的成功离不开一种强化学习算法:GRPO(组相对策略优化)。
DeepSeek-R1 的成功离不开一种强化学习算法:GRPO(组相对策略优化)。
最近,全球 AI 和机器学习顶会 ICLR 2025 公布了论文录取结果:由 IDEA、清华大学、北京大学、香港科技大学(广州)联合团队提出的 ChartMoE 成功入选 Oral (口头报告) 论文。据了解,本届大会共收到 11672 篇论文,被选中做 Oral Presentation(口头报告)的比例约为 1.8%
数学题, 一直是检验 AI 实力的 “硬核考场” —— 公式推导、逻辑链条、抽象思维缺一不可 。最近,我好了几天时间对国内外 7 款大厂模型展开了一场 “数学高考 ”,用阿里全球数学竞赛 + 中国奥赛真题实测它们的智商上限。
2025年,人工智能领域正在经历一场由LLM Agent引发的深刻变革,不管普通人的衣食住行还是研究者的尖端研究,都很难不受Agent的影响。
一夜之间,OpenAI更新三大动向,开源、融资、用户暴增。第一,将开源一个具备推理能力的大语言模型,包含参数权重那种。上一次这样开源还是6年前推出GPT-2。
SANA-Sprint是一个高效的蒸馏扩散模型,专为超快速文本到图像生成而设计。通过结合连续时间一致性蒸馏(sCM)和潜空间对抗蒸馏(LADD)的混合蒸馏策略,SANA-Sprint在一步内实现了7.59 FID和0.74 GenEval的最先进性能。SANA-Sprint仅需0.1秒即可在H100上生成高质量的1024x1024图像,在速度和质量的权衡方面树立了新的标杆。
在三维数字内容生产领域,三角形网格作为核心的几何表示形式,其质量直接影响虚拟资产在影视、游戏和工业设计等应用场景中的表现与效率。
在视觉强化学习中,许多方法未考虑序列决策过程,导致所学表征缺乏关键的长期信息的空缺被填补上了。
由于 DeepSeek R1 和 OpenAI o1 等推理模型(LRM,Large Reasoning Model)带来了新的 post-training scaling law,强化学习(RL,Reinforcement Learning)成为了大语言模型能力提升的新引擎。然而,针对大语言模型的大规模强化学习训练门槛一直很高:
你是否曾对着一个繁复的AI框架,无奈地想:"真有必要搞得这么复杂吗?"在与臃肿框架斗争一年后,Zachary Huang博士决定大刀阔斧地革新,剔除所有花里胡哨的部分。于是Pocket Flow诞生了——一个仅有100行代码的超轻量级大语言模型框架!