
强化学习也涌现?自监督RL扩展到1000层网络,机器人任务提升50倍
强化学习也涌现?自监督RL扩展到1000层网络,机器人任务提升50倍虽然大多数强化学习(RL)方法都在使用浅层多层感知器(MLP),但普林斯顿大学和华沙理工的新研究表明,将对比 RL(CRL)扩展到 1000 层可以显著提高性能,在各种机器人任务中,性能可以提高最多 50 倍。
虽然大多数强化学习(RL)方法都在使用浅层多层感知器(MLP),但普林斯顿大学和华沙理工的新研究表明,将对比 RL(CRL)扩展到 1000 层可以显著提高性能,在各种机器人任务中,性能可以提高最多 50 倍。
其实大模型在DeepSeek-V3时期就已经「顿悟」了?
本文探讨基于树搜索的大语言模型推理过程中存在的「过思考」与「欠思考」问题,并提出高效树搜索框架——Fetch。本研究由腾讯 AI Lab 与厦门大学、苏州大学研究团队合作完成。
来自清华大学、哈佛大学等机构的研究团队提出了一种创新方法——4D LangSplat。该方法基于动态三维高斯泼溅技术,成功重建了动态语义场,能够高效且精准地完成动态场景下的开放文本查询任务。这一突破为相关领域的研究与应用提供了新的可能性, 该工作目前已经被CVPR2025接收。
Nvidia刚刚发布了「世界生成」模型Cosmos-Transfer1,可以根据多种模态的空间控制输入(如分割、深度和边缘)生成世界模拟,使得世界生成具有高度可控性。开发者使用模型能够创建高度逼真的模拟环境,用于训练机器人和自动驾驶车辆。
澳大利亚国立大学团队提出了ARINAR模型,与何凯明团队此前提出的分形生成模型类似,采用双层自回归结构逐特征生成图像,显著提升了生成质量和速度,性能超越了FractalMAR模型,论文和代码已公开。
3月20日,国家儿童医学中心、首都医科大学附属北京儿童医院(以下简称“北京儿童医院”)联合北京百川智能科技有限公司(以下简称“百川智能”)、小儿方健康科技(北京)有限公司(以下简称“小儿方”)正式发布国内首个儿科大模型——“福棠·百川”儿科大模型,同时发布两款人工智能应用即AI儿科医生基层版和专家版。
到目前为止,百川智能是所有大模型企业中,唯一对外高调表达要all in 医疗的。这种明确的表态,让百川智能备受关注的同时,也背负了很多的质疑。百川智能和王小川近日再次成为媒体关注的焦点,主要关注点是百川智能的组织调整,以及大部分人对于百川为什么收缩金融业务而all in医疗表示出极大的不解。
当你要求AI"帮我订一张去纽约的机票"时,它需要理解目标、分解步骤、适应变化,这个过程远比看起来复杂。UC伯克利的研究者们带来了振奋人心的新发现:通过将任务规划和执行分离的PLAN-AND-ACT框架,他们成功将智能体在长期任务中的规划能力提升了54%,创造了新的技术突破。
RAG工作发展时间线(2020年至今)。展示了RAG相关研究的三个主要领域:基础(包括RAG学习和RAG框架)、进阶和评估。关键的语言模型(GPT-3、GPT-4等)发展节点标注在时间线上。