阿里云,用全栈 AI 刷新第十七个双十一
阿里云,用全栈 AI 刷新第十七个双十一今年也是阿里从芯片到云到 PaaS 到大模型,再到顶层 agent 等全栈 AI 能力接入的首个双 11——世界范围内,从未有过如此大规模生产场景 AI 落地。 场景变化,用户量增加,叠加全栈 AI 接入——当双 11 技术备战进入第 17 个年头,其意义早已超越一次促销的技术保障。
今年也是阿里从芯片到云到 PaaS 到大模型,再到顶层 agent 等全栈 AI 能力接入的首个双 11——世界范围内,从未有过如此大规模生产场景 AI 落地。 场景变化,用户量增加,叠加全栈 AI 接入——当双 11 技术备战进入第 17 个年头,其意义早已超越一次促销的技术保障。
昨天,全球参数量最大的具身智能多模态大模型——Pelican-VL 1.0正式开源。它不仅覆盖了7B到72B级别,能够同时理解图像、视频和语言指令,并将这些感知信息转化为可执行的物理操作。
华东师范大学智能教育学院发布OmniEduBench,首次从「知识+育人」双维度评测大模型教育能力。测评2.4万道中文题后,实验结果显示:GPT-4o等顶尖AI会做题,却在启发思维、情感支持等育人能力上远不及人类,暴露AI当老师的关键短板。
在三维视觉领域,3D Gaussian Splatting (3DGS) 是近年来大热的三维场景建模方法。它通过成千上万的高斯球在空间中“泼洒”,拼合成一个高质量的三维世界,就像是把一片空白的舞台,用彩色的光斑和粒子逐渐铺满,最后呈现出一幅立体的画卷。
刚刚,在理解大模型复杂行为的道路上,OpenAI又迈出了关键一步。他们从自己训练出来的稀疏模型里,发现存在结构小而清晰、既可理解又能完成任务的电路(这里的电路,指神经网络内部一组协同工作的特征与连接模式,是AI可解释性研究的一个术语)。
随着现在的主流大模型都能轻松通过图灵测试,这个持续了数十年的标准开始逐渐过时。奥特曼和量子计算之父David Deutsch讨论得出了一个新的图灵测试2.0标准,可以更好地衡量究竟怎样AI才算拥有真正的智能。
研究者们提出了 FDA(Model Merging with Functional Dual Anchors)——一个全新的模型融合框架。与传统的参数空间操作不同,FDA 将专家模型的参数知识投射到输入-表征空间中的合成锚点,通过功能对偶的方式实现更高效的知识整合。
多模态大语言模型(MLLMs)在处理来自图像和文本等多种来源的信息时能力强大 。 然而,一个关键挑战随之而来:当这些模态呈现相互冲突的信息时(例如,图像显示一辆蓝色汽车,而文本描述它为红色),MLLM必须解决这种冲突 。模型最终输出与某一模态信息保持一致的行为,称之为“模态跟随”(modality following)
大模型编程最近太猛了。
谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。