
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
来自主题: AI技术研报
5156 点击 2024-02-03 12:52
有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
OPO 无需训练即可实现实时动态对齐,而且因其即插即用的特性,适用于所有的开源与闭源大模型。
并非所有人都熟知如何与 LLM 进行高效交流。 一种方案是,人向模型对齐。于是有了 「Prompt工程师」这一岗位,专门撰写适配 LLM 的 Prompt,从而让模型能够更好地生成内容。
评估大模型对齐表现最高效的方式是?在生成式AI趋势里,让大模型回答和人类价值(意图)一致非常重要,也就是业内常说的对齐(Alignment)。