AI资讯新闻榜单内容搜索-泛化

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 泛化
LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

LoRA综述来了! 浙大《大语言模型的LoRA研究》综述

低秩适应(Low-Rank Adaptation,LoRA)通过可插拔的低秩矩阵更新密集神经网络层,是当前参数高效微调范式中表现最佳的方法之一。此外,它在跨任务泛化和隐私保护方面具有显著优势。

来自主题: AI技术研报
11468 点击    2024-07-21 14:02
清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

清华提出时间序列大模型:面向通用时序分析的生成式Transformer | ICML 2024

大模型在语言、图像领域取得了巨大成功,时间序列作为多个行业的重要数据类型,时序领域的大模型构建尚处于起步阶段。近期,清华大学的研究团队基于Transformer在大规模时间序列上进行生成式预训练,获得了任务通用的时序分析模型,展现出大模型特有的泛化性与可扩展性

来自主题: AI技术研报
10953 点击    2024-07-19 12:31
ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

上下文学习 (in-context learning, 简写为 ICL) 已经在很多 LLM 有关的应用中展现了强大的能力,但是对其理论的分析仍然比较有限。人们依然试图理解为什么基于 Transformer 架构的 LLM 可以展现出 ICL 的能力。

来自主题: AI技术研报
4827 点击    2024-06-28 11:23
LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

LLM惊现篡改代码获得奖励,欺骗人类无法根除逆转!Anthropic新作揭露惊人真相

一直以来大模型欺骗人类,早已不是什么新鲜事了。可是,最新研究竟发现,未经明确训练的LLM不仅会阿谀奉承,甚至入侵自己系统修改代码获得奖励。最恐怖的是,这种泛化的能力根本无法根除。

来自主题: AI资讯
9290 点击    2024-06-27 17:06
自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」

近日,清华大学与密歇根大学联合提出的自动驾驶汽车安全性「稀疏度灾难」问题,发表在了顶刊《Nature Communications》上。研究指出,安全攸关事件的稀疏性导致深度学习模型训练难度大增,提出了密集学习、模型泛化改进和车路协同等技术路线以应对挑战。

来自主题: AI资讯
3652 点击    2024-06-26 17:12
ICLR 2024 Oral | 应对随时间变化的分布偏移,西安大略大学等提出学习时序轨迹方法

ICLR 2024 Oral | 应对随时间变化的分布偏移,西安大略大学等提出学习时序轨迹方法

ICLR 2024 Oral | 应对随时间变化的分布偏移,西安大略大学等提出学习时序轨迹方法

在现实世界的机器学习应用中,随时间变化的分布偏移是常见的问题。这种情况被构建为时变域泛化(EDG),目标是通过学习跨领域的潜在演变模式,并利用这些模式,使模型能够在时间变化系统中对未见目标域进行良好的泛化。然而,由于 EDG 数据集中时间戳的数量有限,现有方法在捕获演变动态和避免对稀疏时间戳的过拟合方面遇到了挑战,这限制了它们对新任务的泛化和适应性。

来自主题: AI技术研报
9887 点击    2024-06-19 23:11
拯救Transformer推理能力!DeepMind新研究TransNAR:给模型嵌入「算法推理大脑」

拯救Transformer推理能力!DeepMind新研究TransNAR:给模型嵌入「算法推理大脑」

拯救Transformer推理能力!DeepMind新研究TransNAR:给模型嵌入「算法推理大脑」

DeepMind最近发表的一篇论文提出用混合架构的方法解决Transformer模型的推理缺陷。将Transformer的NLU技能与基于GNN的神经算法推理器(NAR)的强大算法推理能力相结合,可以实现更加泛化、稳健、准确的LLM推理。

来自主题: AI技术研报
10347 点击    2024-06-17 21:30
即插即用,快速适配!港大FlashST:简单通用的智慧交通时空预测模型 | ICML 2024

即插即用,快速适配!港大FlashST:简单通用的智慧交通时空预测模型 | ICML 2024

即插即用,快速适配!港大FlashST:简单通用的智慧交通时空预测模型 | ICML 2024

华南理工大学和香港大学的研究人员在ICML 2024上提出了一个简单而通用的时空提示调整框架FlashST,通过轻量级的时空提示网络和分布映射机制,使预训练模型能够适应不同的下游数据集特征,显著提高了模型在多种交通预测场景中的泛化能力。

来自主题: AI技术研报
9340 点击    2024-06-04 15:54
高效、可泛化的高斯重建框架,只需3张视图即可快速推理,45秒便可完成优化

高效、可泛化的高斯重建框架,只需3张视图即可快速推理,45秒便可完成优化

高效、可泛化的高斯重建框架,只需3张视图即可快速推理,45秒便可完成优化

3D 重建和新视图合成技术在虚拟现实和增强现实等领域有着广泛的应用。NeRF 通过隐式地将场景编码为辐射场,在视图合成上取得了显著的成功。

来自主题: AI技术研报
9218 点击    2024-06-02 14:46