具身大模型学习——OCTO
具身大模型学习——OCTO在多样化的机器人数据集上预训练的大型策略有潜力改变机器人学习:与从头开始训练新策略相比,这种通用型机器人策略可以通过少量的领域内数据进行微调,同时具备广泛的泛化能力。
在多样化的机器人数据集上预训练的大型策略有潜力改变机器人学习:与从头开始训练新策略相比,这种通用型机器人策略可以通过少量的领域内数据进行微调,同时具备广泛的泛化能力。
传统的训练方法通常依赖于大量人工标注的数据和外部奖励模型,这些方法往往受到成本、质量控制和泛化能力的限制。因此,如何减少对人工标注的依赖,并提高模型在复杂推理任务中的表现,成为了当前的主要挑战之一。
世界模型又出新进展了,来自国内机构。
近期,智驾行业出现了一个融合了视觉、语言和动作的多模态大模型范式——VLA(Vision-Language-Action Model,即视觉-语言-动作模型),拥有更高的场景推理能力与泛化能力。不少智驾人士都将VLA视为当下“端到端”方案的2.0版本。
中国科学院上海营养与健康研究所李虹研究组多年来在抗癌药物疗效建模方向持续深耕,发表了基于分子组学预测药物响应和肝癌药物基因组相关的系列论文。但前期研究表明肿瘤用药的计算分析仍存在诸多挑战,例如:肿瘤临床前模型和病人存在差异,计算模型缺乏泛化能力;药物组合的作用机制复杂搜索空间大,对药物联用协同效果的准确和稳健估计仍很困难。
专注具身智能的北京灵生科技有限公司(以下简称「灵生科技」)近日宣布完成千万级天使轮融资,投资方包括天容海色、万物为创投、夸克电力。融资资金将用于灵生类脑产品线研发。
北京大学的研究人员开发了一种新型多模态框架FakeShield,能够检测图像伪造、定位篡改区域,并提供基于像素和图像语义错误的合理解释,可以提高图像伪造检测的可解释性和泛化能力。
基于端到端纯学习方法,提高机器人复杂环境下的泛化性。
具有强大泛化能力
在大语言模型(LLMs)后训练任务中,由于高质量的特定领域数据十分稀缺,合成数据已成为重要资源。虽然已有多种方法被用于生成合成数据,但合成数据的理论理解仍存在缺口。为了解决这一问题,本文首先对当前流行的合成数据生成过程进行了数学建模。