
深度|No Priors谈大模型未来市场趋势:小模型,高性能
深度|No Priors谈大模型未来市场趋势:小模型,高性能大语言模型市场的整合与差异:大语言模型市场存在整合的趋势。一方面,人工智能发展的基础产业是资本密集型的,市场整合对于大语言模型市场的资本支撑是必要的。另一方面,为尽可能提高算法的泛化能力,单个大语言模型也需要集成多种创新功能。市场集中度的提高使得企业需要进一步考虑大语言模型的差异化。
大语言模型市场的整合与差异:大语言模型市场存在整合的趋势。一方面,人工智能发展的基础产业是资本密集型的,市场整合对于大语言模型市场的资本支撑是必要的。另一方面,为尽可能提高算法的泛化能力,单个大语言模型也需要集成多种创新功能。市场集中度的提高使得企业需要进一步考虑大语言模型的差异化。
全自动驾驶系统的纯视觉方案如特斯拉 “Tesla Vision”,仅依赖于摄像头收集的图像数据,旨在实现高效且成本效益高的自动驾驶技术。
在机器人研究领域,抓取任务始终是机器人操作中的一个关键问题。这项任务的核心目标是控制机械手移动到合适位置,并完成对物体的抓取。近年来,基于学习的方法在提高对不同物体的抓取的泛化能力上取得了显著进展,但针对机械手本身,尤其是复杂的灵巧手(多指机械手)之间的泛化能力仍然缺乏深入研究。由于灵巧手在不同形态和几何结构上存在显著差异,抓取策略的跨手转移一直存在挑战。
Skild AI 是一家位于匹兹堡的初创公司,由两位前 CMU 教授创立,旨在打造具身智能的通用大脑。Skild 宣称其模型展示了无与伦比的泛化和涌现能力,并且有多于竞争对手 1000 倍的训练数据。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
近日,香港大学发布最新研究成果:智能交通大模型OpenCity。该模型根据参数大小分为OpenCity-mini、OpenCity-base和OpenCity-Pro三个模型版本,显著提升了时空模型的零样本预测能力,增强了模型的泛化能力。
新型图基础模型来了—— AnyGraph,基于图混合专家(MoE)架构,专门为实现图模型跨场景泛化而生。
OpenAI o1 在数学、代码、长程规划等问题取得显著的进步。一部分业内人士分析其原因是由于构建足够庞大的逻辑数据集 <问题,明确的正确答案> ,再加上类似 AlphaGo 中 MCTS 和 RL 的方法直接搜索,只要提供足够的计算量用于搜索,总可以搜到最后的正确路径。然而,这样只是建立起问题和答案之间的更好的联系,如何泛化到更复杂的问题场景,技术远不止这么简单。
中国首个拥有真正意义多任务连续泛化具身模型的机器人,诞生了!这个机器人,是真正由模型训练出来的,据了解,截止目前除了Figure 01,国内似乎还没有第二家能做到这种级别的泛化能力,即使被百般刁难,都能完成任务。清华校友下场创业,才4个月就已融资近2亿。
AnyGraph聚焦于解决图数据的核心难题,跨越多种场景、特征和数据集进行预训练。其采用混合专家模型和特征统一方法处理结构和特征异质性,通过轻量化路由机制和高效设计提升快速适应能力,且在泛化能力上符合Scaling Law。