单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体
单条演示即可抓取一切:北大团队突破通用抓取,适配所有灵巧手本体在灵巧手通用抓取的研究中,由于动作空间维度高、任务具有长程探索特征且涉及多样化物体,传统强化学习(RL)面临探索效率低、奖励函数及训练过程设计复杂等挑战。
在灵巧手通用抓取的研究中,由于动作空间维度高、任务具有长程探索特征且涉及多样化物体,传统强化学习(RL)面临探索效率低、奖励函数及训练过程设计复杂等挑战。
今年三月,Liam Fedus 在推特上宣布离开 OpenAI。这条推文的影响力超出了所有人的预期——硅谷的风投们几乎是立刻行动起来,争相联系这位 ChatGPT 最初小团队的核心成员、曾领导 OpenAI 关键的后训练部门的研究者,他的离职甚至一度引发了一场“反向竞标”。
AI风起云涌,数据隐私如履薄冰。华南理工大学联手深圳北理莫斯科大学,推出FedMSBA与FedMAR,筑成联邦学习的安全堡垒,守护个人隐私!
对抗样本(adversarial examples)的迁移性(transferability)—— 在某个模型上生成的对抗样本能够同样误导其他未知模型 —— 被认为是威胁现实黑盒深度学习系统安全的核心因素。尽管现有研究已提出复杂多样的迁移攻击方法,却仍缺乏系统且公平的方法对比分析:(1)针对攻击迁移性,未采用公平超参设置的同类攻击对比分析;(2)针对攻击隐蔽性,缺乏多样指标。
OpenAI完成史上最重要的一次组织架构调整后,紧接着开了一场直播。首次公开了内部研究目标的具体时间表,其中最引人注目的是“在2028年3月实现完全自主的AI研究员”,具体到月份。
对于机器人来说,世界模型真的有必要想象出精确的未来画面吗?在一篇新论文中,来自华盛顿大学、索尼 AI 的研究者提出了这个疑问。
在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。
当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。
当强大的多模态大语言模型应用于地球科学研究时,它面临着无法忽视的 「阿克琉斯之踵」
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。