
华为创造AI算力新纪录:万卡集群训练98%可用度,秒级恢复、分钟诊断
华为创造AI算力新纪录:万卡集群训练98%可用度,秒级恢复、分钟诊断大模型的落地能力,核心在于性能的稳定输出,而性能稳定的底层支撑,是强大的算力集群。其中,构建万卡级算力集群,已成为全球公认的顶尖技术挑战。
大模型的落地能力,核心在于性能的稳定输出,而性能稳定的底层支撑,是强大的算力集群。其中,构建万卡级算力集群,已成为全球公认的顶尖技术挑战。
你是否注意到,现在的 AI 越来越 "聪明" 了?能写小说、做翻译、甚至帮医生看 CT 片,这些能力背后离不开一个默默工作的 "超级大脑工厂"——AI 算力集群。
英伟达市值重回第一之际,黄仁勋再次接受采访。 除了谈自己和英伟达,还吹了一波马斯克,再再再次赞赏xAI只花19天建起10万卡H100超级集群。
传统计算架构的潜力开发已接近极限 要实现超强的AI能力,需要超大规模的模型,要训练超大规模的AI模型,需要数千,甚至上万的GPU协同工作。
埃隆·马斯克掌控的那几家公司——包括SpaceX、特斯拉、xAI乃至X(原Twitter)——都需要大量的GPU,而且也都是为自己的特定AI或者高性能计算(HPC)项目服务。
10万张H100卡构成的超级AI算力集群就像是现代人类文明的奇观,是人类通向AGI的钥匙。AI时代的军备竞赛已经拉开帷幕,赌注是天量的Capex支出,胜者则有机会成为AI时代的造物主。
在英伟达市值猛涨、各家科技巨头囤芯片的热潮中,我们往往会忽视GPU芯片是如何转变为数据中心算力的。最近,一篇SemiAnalysis的技术文章就深入解读了10万卡H100集群的构建过程。
在过去的一段时间里,“AI-native”成为所有工具的一个显著探索趋势,不论是算力集群的智算中心,还是数据库侧的向量数据库,再或者是不断进化的算法,都在以一种更适配大模型架构的方式被推演出来。
国内首个以国产全功能GPU为底座的大规模算力集群,正式落地了!这便是来自摩尔线程的KUAE智算中心,全国产千卡千亿模型训练平台。