
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
文本到图像的生成模型让创作更加灵活,用户可以用自然语言引导生成图像。
最近,来自上海大学、山东大学和埃默里大学等机构的研究人员首次提出了文本边图的数据集与基准,包括9个覆盖4个领域的大规模文本边图数据集,以及一套标准化的文本边图研究范式。该研究的发表极大促进了文本边图图表示学习的研究,有利于自然语言处理与图数据挖掘领域的深度合作。
在Prompt工程领域,规划任务一直以来都是一个巨大的挑战,因为这要求大语言模型(LLMs)不仅能够理解自然语言,还能有效执行复杂推理和应对长时间跨度的操作。
到现在为止,世界上几乎没有程序员不以某种方式使用人工智能助手。但使用 GitHub Copilot 或 Cursor.AI 来询问技术问题和获取调试帮助可能只是个开始。人工智能编程有一天可能涉及能够根据自然语言提示自行编写程序的代理。这些程序甚至可能取代人类工程师。
大型语言模型 (LLM) 在各种自然语言处理和推理任务中表现出卓越的能力,某些应用场景甚至超越了人类的表现。然而,这类模型在最基础的算术问题的表现上却不尽如人意。
DeepJudge以智能搜索技术为核心,为法律行业提供自然语言搜索,强化数据安全。个性化服务和智能标签提升工作效率,确保法律从业者快速获取所需信息。
在自然语言处理、语音识别和时间序列分析等众多领域中,序列建模是一项至关重要的任务。然而,现有的模型在捕捉长程依赖关系和高效建模序列方面仍面临诸多挑战。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。