
轻量化MobileMamba视觉模型来了|浙大/腾讯优图/华中科大联合出品
轻量化MobileMamba视觉模型来了|浙大/腾讯优图/华中科大联合出品浙大、腾讯优图、华中科技大学的团队,提出轻量化MobileMamba! 既良好地平衡了效率与效果,推理速度远超现有基于Mamba的模型。
浙大、腾讯优图、华中科技大学的团队,提出轻量化MobileMamba! 既良好地平衡了效率与效果,推理速度远超现有基于Mamba的模型。
随着计算机视觉领域的不断发展,自回归模型作为一种强大的生成模型,在图像生成、视频生成、3D 生成和多模态生成等任务中展现出了巨大的潜力。然而,由于该领域的快速发展,及时、全面地了解自回归模型的研究现状和进展变得至关重要。本文旨在对视觉领域中的自回归模型进行全面综述,为研究人员提供一个清晰的参考框架。
Chroma,一家致力于为移动设备打造新型音频视觉娱乐的初创公司。
随着基础模型(如VLMs,例如Minimax、Qwen-V)和尖端图像生成技术(如Flux 1.1)的快速发展,我们正进入一个创造性可能性的新纪元。结合像T5这样的模型以增强对潜在空间中文本提示的理解,这些工具使得生产广告级别的关键视觉(KVs)成为可能,且具有显著的真实感。
在当今多模态领域,CLIP 模型凭借其卓越的视觉与文本对齐能力,推动了视觉基础模型的发展。CLIP 通过对大规模图文对的对比学习,将视觉与语言信号嵌入到同一特征空间中,受到了广泛应用。
Jiaming Song详细介绍了Diffusion模型在视觉生成领域的前沿研究,强调其在提升生成视觉模型质量中的关键作用。他分享了自己从斯坦福大学的博士研究到加入NVIDIA和Luma AI的历程,展示了如何将贝叶斯非参数模型的知识应用到生成式AI中,推动了视觉模型在生成质量和速度上的显著提升。
视觉模型仍是IDEA的研究重点——IDEA正式发布的最新通用视觉大模型DINO-X,可以拥有真正的物体级别理解能力。
在多模态AI领域,基于预训练视觉编码器与MLLM的方法(如LLaVA系列)在视觉理解任务上展现出卓越性能。
近年来,AI for Science 发展提速,不仅为科研领域带来创新研究思路,同时也拓宽了 AI 的落地通路,为其提供了更多具有挑战性的应用场景。在这个过程中,越来越多的 AI 领域研究人员开始关注医疗、材料、生物等传统科研领域,探索其中的研究难点与行业挑战。
北大等出品,首个多模态版o1开源模型来了—— 代号LLaVA-o1,基于Llama-3.2-Vision模型打造,超越传统思维链提示,实现自主“慢思考”推理。 在多模态推理基准测试中,LLaVA-o1超越其基础模型8.9%,并在性能上超越了一众开闭源模型。