
关于大模型「越狱」的多种方式,有这些防御手段
关于大模型「越狱」的多种方式,有这些防御手段随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。
本文介绍清华大学的一篇关于长尾视觉识别的论文: Probabilistic Contrastive Learning for Long-Tailed Visual Recognition. 该工作已被 TPAMI 2024 录用,代码已开源。
随着人工智能技术的快速发展,能够处理多种模态信息的多模态大模型(LMMs)逐渐成为研究的热点。通过整合不同模态的信息,LMMs 展现出一定的推理和理解能力,在诸如视觉问答、图像生成、跨模态检索等任务中表现出色。
针对视觉-语言预训练(Vision-Language Pretraining, VLP)模型的对抗攻击,现有的研究往往仅关注对抗轨迹中对抗样本周围的多样性,但这些对抗样本高度依赖于代理模型生成,存在代理模型过拟合的风险。
近年来,随着大语言模型 (LLM) 的发展,构建检索增强生成 (RAG) 解决方案成为了一个热门话题。RAG 将 LLM 的强大功能与检索模型结合,应用于专有知识数据库。然而,对于开发人员来说,一个主要挑战是将各种文档格式(如 PDF、HTML 等)转换为可供文本模型处理的格式。
近期,关于多模态大模型的研究如火如荼,工业界对此的投入也越来越多。
视觉大语言模型在最基础的视觉任务上集体「翻车」,即便是简单的图形识别都能难倒一片,或许这些最先进的VLM还没有发展出真正的视觉能力?
大家对生成视觉领域有着这样的认知:先有图像生成、视频生成,再有3D生成。
当前的视觉语言模型(VLM)主要通过 QA 问答形式进行性能评测,而缺乏对模型基础理解能力的评测,例如 detail image caption 性能的可靠评测手段。