
生活机器人最后考验!杨笛一团队发布EgoNormia:现实中能否符合社会规范?
生活机器人最后考验!杨笛一团队发布EgoNormia:现实中能否符合社会规范?EgoNormia基准可以评估视觉语言模型在物理社会规范理解方面能力,从结果上看,当前最先进的模型在规范推理方面仍远不如人类,主要问题在于规范合理性和优先级判断上的不足。
EgoNormia基准可以评估视觉语言模型在物理社会规范理解方面能力,从结果上看,当前最先进的模型在规范推理方面仍远不如人类,主要问题在于规范合理性和优先级判断上的不足。
当前,视觉语言模型(VLMs)的能力边界不断被突破,但大多数评测基准仍聚焦于复杂知识推理或专业场景。本文提出全新视角:如果一项能力对人类而言是 “无需思考” 的本能,但对 AI 却是巨大挑战,它是否才是 VLMs 亟待突破的核心瓶颈?
武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。
通过针对视觉的细分类、目标检测等任务设计对应的规则奖励,Visual-RFT 打破了 DeepSeek-R1 方法局限于文本、数学推理、代码等少数领域的认知,为视觉语言模型的训练开辟了全新路径!
模型安全和可靠性、系统整合和互操作性、用户交互和认证…… 当“多模态”“跨模态”成为不可阻挡的AI趋势时,多模态场景下的安全挑战尤其应当引发产学研各界的注意。
你是否想过在自己的设备上运行自己的大型语言模型(LLMs)或视觉语言模型(VLMs)?你可能有过这样的想法,但是一想到要从头开始设置、管理环境、下载正确的模型权重,以及你的设备是否能处理这些模型的不确定性,你可能就犹豫了。
视觉价值模型(VisVM)通过「推理时搜索」来提升多模态视觉语言模型的图像描述质量,减少幻觉现象。实验表明,VisVM能显著提高模型的视觉理解能力,并可通过自我训练进一步提升性能。
对抗攻击,特别是基于迁移的有目标攻击,可以用于评估大型视觉语言模型(VLMs)的对抗鲁棒性,从而在部署前更全面地检查潜在的安全漏洞。然而,现有的基于迁移的对抗攻击由于需要大量迭代和复杂的方法结构,导致成本较高
近日,卡内基梅隆大学与华盛顿大学的研究团队推出了 NaturalBench,这是一项发表于 NeurIPS'24 的以视觉为核心的 VQA 基准。它通过自然图像上的简单问题——即自然对抗样本(Natural Adversarial Samples)——对视觉语言模型发起严峻挑战。
视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。