
DeepSeek同款GRPO训练大提速!魔搭开源全流程方案,支持多模态训练、训练加速和评测全链路
DeepSeek同款GRPO训练大提速!魔搭开源全流程方案,支持多模态训练、训练加速和评测全链路GRPO训练又有新的工具链可以用,这次来自于ModelScope魔搭社区。
GRPO训练又有新的工具链可以用,这次来自于ModelScope魔搭社区。
最新开源的视觉预训练方法,马毅团队、微软研究院、UC伯克利等联合出品!
杜克大学计算进化智能中心的最新研究给出了警示性答案。团队提出的 H-CoT(思维链劫持)的攻击方法成功突破包括 OpenAI o1/o3、DeepSeek-R1、Gemini 2.0 Flash Thinking 在内的多款高性能大型推理模型的安全防线:在涉及极端犯罪策略的虚拟教育场景测试中,模型拒绝率从初始的 98% 暴跌至 2% 以下,部分案例中甚至出现从「谨慎劝阻」到「主动献策」的立场反转。
32B小模型在超硬核「时间线索」推理谜题中,一举击败了o1、o3-mini、DeepSeek-R1,核心秘密武器便是GRPO,最关键的是训练成本暴降100倍。
随着 DeepSeek-R1 的流行与 AI4Math 研究的深入,大模型在辅助形式化证明写作方面的需求日益增长。作为数学推理最直接的应用场景,形式化推理与验证(formal reasoning and verification),也获得持续关注。
AI研究智能体全新升级!Meta等推出MLGym,一个专门用于评估和开发LLM智能体的Gym环境。MLGym提供了标准化的基准测试,让LLM智能体在多任务挑战中展现真正实力。
模型即产品?
CVPR 2025,混合新架构MambaVision来了!Mamba+Transformer混合架构专门为CV应用设计。MambaVision 在Top-1精度和图像吞吐量方面实现了新的SOTA,显著超越了基于Transformer和Mamba的模型。
见识过32B的QwQ追平671的DeepSeek R1后——刚刚,7B的DeepSeek蒸馏Qwen模型超越o1又是怎么一回事?新方法LADDER,通过递归问题分解实现AI模型的自我改进,同时不需要人工标注数据。
来自哥本哈根大学、苏黎世联邦理工学院等机构的研究人员,提出了一个全新的多模态Few-shot 3D分割设定和创新方法。无需额外标注成本,该方法就可以融合文本、2D和3D信息,让模型迅速掌握新类别。