
从Minecraft到虚幻5,AI首次实现3D游戏零样本迁移,跨游戏直接上手
从Minecraft到虚幻5,AI首次实现3D游戏零样本迁移,跨游戏直接上手无论你是技术创造者还是使用者,理解这场认知革命都至关重要。我们正在从「AI as tools」向「AI as thinking partners」转变,这不仅改变了技术的能力边界,也改变了我们与技术协作的方式。
无论你是技术创造者还是使用者,理解这场认知革命都至关重要。我们正在从「AI as tools」向「AI as thinking partners」转变,这不仅改变了技术的能力边界,也改变了我们与技术协作的方式。
近日,上海人工智能实验室(上海 AI 实验室)开源了生成式世界模型 AETHER。该模型全部由合成数据训练而成,不仅在传统重建与生成任务中表现领先,更首次赋予大模型在真实世界中的 3D 空间决策与规划能力,
DeepSeek-R1 展示了强化学习在提升模型推理能力方面的巨大潜力,尤其是在无需人工标注推理过程的设定下,模型可以学习到如何更合理地组织回答。然而,这类模型缺乏对外部数据源的实时访问能力,一旦训练语料中不存在某些关键信息,推理过程往往会因知识缺失而失败。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
就在昨天,深耕语音、认知智能几十年的科大讯飞,发布了全新升级的讯飞星火推理模型 X1。不仅效果上比肩 DeepSeek-R1,而且我注意到一条官方发布的信息——基于全国产算力训练,在模型参数量比业界同类模型小一个数量级的情况下,整体效果能对标 OpenAI o1 和 DeepSeek R1。
o3和o4-mini视觉推理突破,竟未引用他人成果?一名华盛顿大学博士生发出质疑,OpenAI研究人员对此回应:不存在。
采样多就一定准吗?研究人员用实验告诉你:是的,而且超乎想象!基于采样的搜索不仅能在并行处理中大展身手,还通过隐式扩展让验证更精准。
Hyper-RAG利用超图同时捕捉原始数据中的低阶和高阶关联信息,最大限度地减少知识结构化带来的信息丢失,从而减少大型语言模型(LLM)的幻觉。
近期,大模型智能体(Agent)的相关话题爆火 —— 不论是 Anthropic 抢先 MCP 范式的快速普及,还是 OpenAI 推出的 Agents SDK 以及谷歌最新发布的 A2A 协议,都预示了 AI Agent 的巨大潜力。
还在用搜索和规则训练AI游戏?现在直接「看回放」学打宝可梦了!德州大学奥斯汀分校的研究团队用Transformer和离线强化学习打造出一个智能体,不靠规则、没用启发式算法,纯靠47.5万场人类对战回放训练出来,居然打上了Pokémon Showdown全球前10%!