
GPU 维修那些事: H100 哪里容易坏?以 Llama3 训练大模型为例
GPU 维修那些事: H100 哪里容易坏?以 Llama3 训练大模型为例根据去年2024年7月28日Meta公司在训练大模型(Llama 3)时使用“16384 个 英伟达H100 GPU 集群”的经验,该显卡在高负载、大规模集群运行环境下容易出现以下故障点:
根据去年2024年7月28日Meta公司在训练大模型(Llama 3)时使用“16384 个 英伟达H100 GPU 集群”的经验,该显卡在高负载、大规模集群运行环境下容易出现以下故障点:
当前搜索AI市场面临着一个显著的断层:Perplexity的Sonar Reasoning Pro和OpenAI的GPT-4o Search Preview等专有解决方案与开源替代品之间存在巨大差距。这些封闭式系统虽然表现优异,但却限制了透明度、创新和创业自由。作为一名正在开发Agent产品的工程师,你是否曾经渴望拥有一个功能强大且完全开放的搜索框架?
原生多模态Llama 4终于问世,开源王座一夜易主!首批共有两款模型Scout和Maverick,前者业界首款支持1000万上下文单H100可跑,后者更是一举击败了DeepSeek V3。目前,2万亿参数巨兽还在训练中。
想象一下,一座生机勃勃的 3D 城市在你眼前瞬间成型 —— 没有漫长的计算,没有庞大的存储需求,只有极速的生成和惊人的细节。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
文生图 or 图生文?不必纠结了!
在人工智能飞速发展的今天,LLM 的能力令人叹为观止,但其局限性也日益凸显 —— 它们往往被困于训练数据的「孤岛」,无法直接触及实时信息或外部工具。
最新研究发现,LLM在面对人格测试时,会像人一样「塑造形象」,提升外向性和宜人性得分。AI的讨好倾向,可能导致错误的回复,需要引起警惕。
大模型虽然推理能力增强,却常常「想太多」,回答简单问题也冗长复杂。Rice大学的华人研究者提出高效推理概念,探究了如何帮助LLM告别「过度思考」,提升推理效率。