时薪150美元!华尔街精英亲自教AI干掉「自己人」
时薪150美元!华尔街精英亲自教AI干掉「自己人」AI训练背后,正在上演一场新的「华尔街迁徙」!前银行家纷纷化身AI导师,用自己的专业知识帮助OpenAI、xAI、Scale AI等AI公司训练模型,华尔街精英正在成为AI重塑华尔街的幕后推手。
AI训练背后,正在上演一场新的「华尔街迁徙」!前银行家纷纷化身AI导师,用自己的专业知识帮助OpenAI、xAI、Scale AI等AI公司训练模型,华尔街精英正在成为AI重塑华尔街的幕后推手。
数据集蒸馏是一种用少量合成数据替代全量数据训练模型的技术,能让模型高效又节能。WMDD和GUARD两项研究分别解决了如何保留原始数据特性并提升模型对抗扰动能力的问题,使模型在少量数据上训练时既准确又可靠。
为破解机器人产业「一机一调」的开发困境,智源研究院开源了通用「小脑基座」RoboBrain-X0。它创新地学习任务「做什么」而非「怎么动」,让一个预训练模型无需微调,即可驱动多种不同构造的真实机器人,真正实现了零样本跨本体泛化。
很多人认为,Scaling Law 正在面临收益递减,因此继续扩大计算规模训练模型的做法正在被质疑。最近的观察给出了不一样的结论。研究发现,哪怕模型在「单步任务」上的准确率提升越来越慢,这些小小的进步叠加起来,也能让模型完成的任务长度实现「指数级增长」,而这一点可能在现实中更有经济价值。
近期,AI营销公司橙果视界(PhotoG母公司)宣布完成数千万元新一轮融资,由云天使基金领投,力合创投和金沙江联合资本跟投。本轮融资将用于进一步扩大行业数据规模,推进垂直行业后训练模型迭代,进一步加快全链路营销智能体在多行业的业务落地,持续探索能感知、决策、创造并执行的商业大脑。
近日,Anthropic更新了它的消费者条款,没想竟把网友惹怒了,有的还把以往的「旧账」都翻了出来。这次网友的反应为啥这么激烈?大家可能还记得在Claude上线之初,Anthropic就坚决表示不会拿用户数据来训练模型。这次变化不仅自己打脸,还把以往一些「背刺」用户的往事都抖搂出来了。
众所周知,大型语言模型的训练通常分为两个阶段。第一阶段是「预训练」,开发者利用大规模文本数据集训练模型,让它学会预测句子中的下一个词。第二阶段是「后训练」,旨在教会模型如何更好地理解和执行人类指令。
在噪声污染严重影响预训练数据的质量时,如何能够高效且精细地精炼数据? 中科院计算所与阿里Qwen等团队联合提出RefineX,一个通过程序化编辑任务实现大规模、精准预训练数据精炼的新框架。
在大模型狂飙的时代,AI 创业被裹挟进一种“技术正统性”的焦虑:要不要训练模型?有没有算力资源?底层自研是不是护城河?但 Yiran,一位本科学钢琴、靠一段自动发邮件脚本开启创业旅程的 00 后女性创业者,选择了另一种路径——她不训练模型,不押技术论文,而是把 AI 做成一个真正能“成事”的销售助理。
预训练模型能否作为探索新架构设计的“底座” ? 最新答案是:yes!