给RAG系统做一次全面「体检」,亚马逊开源RAGChecker诊断工具
给RAG系统做一次全面「体检」,亚马逊开源RAGChecker诊断工具检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
“FLUX在线版”,新增一系列重磅功能!
作为全公司产品做的最好的工程师,同时也是代码写得最好的产品经理,你深刻地知道:搞个靠谱的 AI 应用需要灵感,而好的灵感则需要一个靠谱的 demo 来验证。
T-MAC是一种创新的基于查找表(LUT)的方法,专为在CPU上高效执行低比特大型语言模型(LLMs)推理而设计,无需权重反量化,支持混合精度矩阵乘法(mpGEMM),显著降低了推理开销并提升了计算速度。
事情是这样的,前两天面壁刚刚推出了“小钢炮” MiniCPM-V 2.6 模型,据说视频理解能力直接对标GPT-4V,最重要的是能直接部署在iPad 上。
有CPU就能跑大模型,性能甚至超过NPU/GPU!
单卡搞定Llama 3.1(405B),最新大模型压缩工具来了!
不同类型的数据配比如何配置:先通过小规模实验确定最优配比,然后将其应用到大模型的训练中。 Token配比结论:通用知识50%;数学与逻辑25%;代码17%;多语言8%。
千亿参数规模的大模型推理,服务器仅用4颗CPU就能实现!
英伟达NIM新升级,助力AI在多领域应用。