
Jamba 1.5发布,最长上下文,非Transformer架构首次成功领先
Jamba 1.5发布,最长上下文,非Transformer架构首次成功领先Jamba是第一个基于 Mamba 架构的生产级模型。Mamba 是由卡内基梅隆大学和普林斯顿大学的研究人员提出的新架构,被视为 Transformer 架构的有力挑战者。
Jamba是第一个基于 Mamba 架构的生产级模型。Mamba 是由卡内基梅隆大学和普林斯顿大学的研究人员提出的新架构,被视为 Transformer 架构的有力挑战者。
现在,长上下文视觉语言模型(VLM)有了新的全栈解决方案 ——LongVILA,它集系统、模型训练与数据集开发于一体。
当今的LLM已经号称能够支持百万级别的上下文长度,这对于模型的能力来说,意义重大。但近日的两项独立研究表明,它们可能只是在吹牛,LLM实际上并不能理解这么长的内容。
长上下文大模型帮助机器人理解世界。
无情戳穿“长上下文”大模型的虚标现象
就在刚刚,法国AI初创公司Mistral发布了自家首款代码生成模型Codestral。不仅支持32K长上下文窗口以及80多种编程语言,而且还用22B的参数量取得了与70B的Llama 3相近的性能。目前,已经开放API与IDE插件供用户使用。
既能像 Transformer 一样并行训练,推理时内存需求又不随 token 数线性递增,长上下文又有新思路了?
从国际顶流 GPT-4 128K、Claude 200K 到国内「当红炸子鸡」支持 200 万字上下文的 Kimi Chat,大语言模型(LLM)在长上下文技术上不约而同地卷起来了
为解决大模型(LLMs)在处理超长输入序列时遇到的内存限制问题,本文作者提出了一种新型架构:Infini-Transformer,它可以在有限内存条件下,让基于Transformer的大语言模型(LLMs)高效处理无限长的输入序列。实验结果表明:Infini-Transformer在长上下文语言建模任务上超越了基线模型,内存最高可节约114倍。
它通过将压缩记忆(compressive memory)整合到线性注意力机制中,用来处理无限长上下文