摘要
本发明公开了一种基于迁移学习的跨类型电池衰退预测方法。本发明包括:步骤1:分析不同材料电池的放电V‑Q曲线之间的关系,构建描述不同材料电池放电V‑Q曲线间潜在关系的通用数学模型;步骤2:基于不同类型电池V‑Q曲线间的数学模型,设计新的损失函数;步骤3:建立了基于全局注意力机制的LSTM‑seq2seq模型,并用新的损失函数优化模型参数,以重构目标域中电池的V‑Q曲线;步骤4:应用重构后的电池V‑Q数据,以Siamese‑CNN模型为预训练模型,提出了基于迁移的适用于不同类型电池衰退轨迹预测方法。本发明可以基于电池成组使用前少量循环数,实现不同类型电池的衰退轨迹预测。