摘要
本发明公开了一种基于自适应动态分组的农作物病害识别方法,属于农作物病害识别技术领域,包括获取农作物病害图像数据集,并进行数据增强,得到训练集数据;基于DGC动态分组卷积和MLCS多层级通道重排,建立农作物病害识别模型,并利用训练集数据进行训练,得到训练好的农作物病害识别模型,通过训练好的农作物病害识别模型,完成农作物病害识别。本发明通过结合动态分组和多层级通道重排技术,实现了对农作物病害识别模型的轻量化设计,能够有效降低神经网络模型的计算复杂度与参数量,显著缩短了训练时间,同时能够在计算资源有限的移动端或嵌入式设备上实现高效、准确的病害检测。