随着AI的发展,其应用场景也越来越广泛。在这样的背景下,面向企业的B端产品同样迎来了转型升级的机遇。本文将阐述AI在B端产品中的应用,希望对你有所帮助。
如果在10年前,我们可能还难以想象一个系统不仅能像人类的大脑一般智能,甚至还能超越人类在数据分析、决策支持、甚至是创造性工作方面的能力。
而如今,这不再是科幻小说的情节,而是我们身边正在发生的现实。去年发布的chatGPT,不仅能像人类一样与我们对话,而且还能够为我们解决工作、生活中遇到的种种问题。
在这样的背景下,面向企业的B端产品同样迎来了转型升级的机遇。于是从几个月前我便持续关注AI相关动态,也尝试在自己的工作、生活中将AI运用起来。
这篇文章,则是分享给大家这段时间来我的观察、学习成果。包括:
首先想理解生成式AI可能会出现哪些应用,那AI的基础知识是必不可少的。
如果大家想更系统地了解AI的基础知识,十分推荐大家可以去观看「Generative AI for everyone」这门课程,课程由机器学习领域的专家吴恩达教授开设,目前已经有中文字幕,课程不长,非常推荐大家抽空看看。
课程地址:https://www.coursera.org/learn/generative-ai-for-everyone
如果你没有时间看课程,也可以选择看我这篇精华内容总结的文章,基本已经把AI的基础概念给你说清楚了:https://mp.weixin.qq.com/s/vKxmi2E2BAF-22T9-Y88SA
生成式AI模型是可以由我们自行调试的。目前一些厂商都有开放自己的开源模型,我们可以利用别人做好的预模型,来将AI技术与自身产品做结合。
目前主流下有几种调试AI的技术,这里为大家介绍两种比较常见的技术,分别是RAG和Fine-tunning。
RAG是一种支持导入自身/企业信息,让GenAI学习并回答的技术。目前很流行的「与PDF对话」之类的应用,便是这种技术下的产物。
它的运作方式可以简单理解为3步:
微调是比RAG更复杂的一个技术,它用训练好的参数初始化自己的网络,然后用自己的数据接着训练。
我们可以简单将它的技术原理概括为2步:
这种技术一般在以下几种场景中使用:
需要用更小的模型去完成工作;(例如不希望GenAI消耗过多性能,仅需要完成一小部分任务即可时)
通过这两种调试AI的技术,我们可以选取大公司已经训练好的预模型进行调试,使AI更符合我们自身企业、个人的要求。
在模型选择上,一般有开源模型、闭源模型。他们都各有优缺点,如下:
而不同级别参数的模型,使得AI最终展现出来的能力也是不一样的。
不同参数AI模型的能力情况如下:
所以根据场景,AI团队可以选择不同的模型进行调试。
需要注意,如果想要调试AI,机器学习工程师和软件工程师是不可或缺的。
如果条件允许的话,团队内有产品经理和数据工程师是更好的。产品经理的角色也可以帮助更好地检验产品的商业化潜质,而数据工程师的角色可以多维度的分析数据,提供反馈。
目前生成式人工智能已经在B端产品中得到了怎样的应用呢?
接下来,我将分享一些国内外已经推出的人工智能产品,以及它们的设计方向,希望能给B端产品的伙伴们带来一些灵感。
鉴于时间和篇幅限制,接下来的内容将主要基于企业公开资料进行介绍。我也正在尝试申请部分产品的试用,后续会分享更具体、详细的产品测评,欢迎大家持续关注。
Twilio是一个支持超过300,000个客户的公司,提供文本消息、电话通话和电子邮件服务,帮助公司与客户建立良好的关系。他们几个月前推出了AI产品「Customer AI」;
目前根据公开资料,可以看出他们的AI产品有以下亮点:
1. 个性化推荐:AI能够连接过往所有互动的数据点,为客户生成个性化推荐,并为每次活动找到合适的人群,这对于市场营销团队来讲,能大大提升转化率;
2. 个性化跟进建议:AI技术的实时分析可以通知员工何时跟进之前的客户互动,并给出个性化跟进建议;
3. 客户分析:AI帮助销售人员了解如何转化潜在客户,并通过减少摩擦来优化客户的注册或登录过程;
Salesforce推出的Einstein 1平台,是一个全面升级的客户数据平台,旨在为企业提供一个值得信赖的人工智能(AI)平台。
根据企业的公开资料,可以看出他们的AI产品有以下亮点:
1. 数据整合:整合内外部数据源,确保所有数据在一个平台上可访问。帮助员工更好地理解客户和业务,提供预测性分析和内容生成。
2. 任务自动化:Einstein 1平台支持自动化工作流程,可以通过Flow实现自动化。
例如下图中,便设置了根据客户资料自动推荐折扣的自动工作流。
3. 个性化客户体验:提高客户服务水平,提供为客户提供更个性化的体验。
下图演示的是Einstein 1自动为销售人员生成邮件内容。
但saleforce还支持自行配置,针对客户生成更个性化的邮件内容。
HubSpot是一家总部位于美国的软件公司,专注于开发和销售营销、销售和客户服务软件。
他们的AI工具在销售、营销和客户服务方面提供了很多新功能,下面是一些亮点介绍:
1. 博客文章生成:用户只需点击几下就能创建针对特定国家和博客的搜索引擎优化(SEO)标题和内容。此外,还可以使用HubSpot AI工具调整文章的语气或添加结论。
AI自动生成文章大纲,在这个环节就可以介入修改
最终生成的文章
2. 内容生产:HubSpot提供了报告助手,可以快速生成基于特定查询的报告,并允许用户自定义和优化这些报告。此外,内容助手还可以为销售团队撰写电子邮件,包括介绍邮件、冷邮件或跟进邮件,帮助提高沟通效率。
博主演示的是根据右侧的内容要求,生成了左侧的数据表图
3. 客户跟进:HubSpot AI可以协助客服团队通过重写、扩展或调整信息的语气来改善与客户的沟通。还可以自动生成对话摘要,便于服务代表理解和回顾客户的需求。
邮件词语修改,这个就不多说了,跟saleforce的是一样的
通过对这几款产品的观察,可以看到生成式AI在B端产品上面的应用集中于两个词:个性化、自动化。
个性化:通过AI强大的文本分析能力,对客户过往数据进行分析,并在各种场景下(营销、转化、售后)给予工作人员更贴合客户个性化的建议,以给予客户更优体验。
自动化:支持将部分重复工作交由机器人处理。并在各种文本工作中(例如邮件沟通),由AI生成内容,以大大节省人工时间,提升效率。
在落实AI与B端产品的结合上,也需要注意企业都非常在意“数据安全”问题。
由AI提升效率固然是好,但如果发生了窃取数据,或有心之人通过特定的prompt套取出企业的机密信息,这对于企业来说是非常严重的安全威胁。
所以在未来AI与B端产品结合的路上,数据安全会是一直存在的,非常重要的命题。
《哈佛商业评论》中,介绍了一些对于知识工作者来说,如何更好地将AI应用起来的办法。
目前使用最多的实践案例来看,生成式AI特别可以在三个主要方面发挥作用:通过自动化一些结构化任务来减轻认知负荷,提高你对非结构化任务的认知能力,以及改善工作中的学习过程。
生成式AI工具可以通过释放人的精力,使我们专注于高价值的非结构化任务。
例如我们每天有固定要处理的文件内容,这些文件就可以交由生成式AI帮我们阅读、处理。
我自己目前也关注了很多产品、生成式AI领域的账号,看到一些感兴趣的内容就会先记录下来,然后统一交给GPT帮我概括,再通过概括判断我是否该深入阅读。
注意:GPT的概括是不一定全面的。如果对文章感兴趣,建议去深入阅读,不要使用概括去理解整篇文章。
GPT帮我概括的文章大纲
另一种增强知识工作的方法,是用生成式AI促进高阶认知过程,执行非结构化任务。这其中我们可以应用起来的是提升批判性思维和创造力。
批判性思维方面,生成式AI可以帮助人们就面临的挑战提出更好的问题。例如我最近在工作中遇到瓶颈,就会喜欢去问一下GPT的想法,两者之间的想法相碰撞,就跟好友聊天一样,更容易产生好的思路。
而创造力方面,更多指提升人们的生产效率。GenAI可以根据可行性、影响、成本和新颖性等标准评估和对我们的想法进行完善,有了AI的加入后,我们优化迭代的速度更快了,也不用一遍遍的检查、思考。
例如我现在会在每次完成文章后,让GPT帮我检查文章逻辑,修改语句等。比原先我需要检查4、5遍文章,现在有了GPT的帮助,我起码节省了一半的时间用于检查文章这件事情上。
GPTs提供的文章修改建议,根据它的建议修改成了大家最终看到的文章版本
掌握技能需要练习,而不仅是课堂学习。然而要使练习有效,就需要反馈。随着AI生成能力的不断提高,为每位知识工作者配备一位AI导师成为可能。
目前在Github中,已经有相关的教程,如何轻松的调教GPTs成为自己的个人导师,教自己学技能。
附:AI资源推荐:
如果看到这里,你对生成式AI也开始产生兴趣,并开始想要系统了解,下面有一些资源可以推荐给你:
**AI基础知识**
推荐课程:
1. 吴恩达 《Generative AI for everyone》
https://www.coursera.org/learn/generative-ai-for-everyone
目前已有中文字幕,无压力。
2. 微软《Generative AI for Beginners – A 12-Lesson Course》 – https://techcommunity.microsoft.com/t5/educator-developer-blog/generative-ai-for-beginners-a-12-lesson-course/ba-p/3968583
需有英文基础。部分课节已在B站有翻译,大家可以通过lesson的标题、部分关键词去搜索。
**AI一线新闻**
1. Lex Fridman的播客、视频;
2. Google AI Bolg
https://blog.research.google/
**实际上手使用AI**
了解了再多的信息,如果没有用起来,那终究还是会变为“纸上谈兵”。
学习最好的方法还是实践,推荐大家可以将AI使用起来。
**快速使用提示词**
对提示词还不太清楚该怎么用的话,有一个偷懒的办法:直接借鉴别人的模版,这里推荐个好用的中文提示词网站,非常实用:
https://www.aishort.top/
人们常说“历史的车轮滚滚向前,这不是以人们的意志所能改变的。”
随着新技术的不断发展,它融入我们的工作、生活将是大趋势。如何拥抱新技术,是我们必须要面对的课题。
这是我第一次尝试写此类型的文章,还有许多不足的地方,如文章有错误、遗漏或不够详尽的地方,欢迎各位不吝提出指正。
同时因为篇幅限制,很多内容也没能在一篇文章内呈现完,后续我也计划继续撰写:
文章来自于 “人人都是产品经理”,作者 “Thea小里”
【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。
项目地址:https://github.com/n8n-io/n8n
在线使用:https://n8n.io/(付费)
【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。
项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file
【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。
项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file
在线使用:https://vectorvein.ai/(付费)
【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。
项目地址:https://github.com/microsoft/graphrag
【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。
项目地址:https://github.com/langgenius/dify
【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。
项目地址:https://github.com/infiniflow/ragflow/tree/main
【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目
项目地址:https://github.com/phidatahq/phidata
【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。
项目地址:https://github.com/TaskingAI/TaskingAI
【开源免费】MindSearch是一个模仿人类思考方式的AI搜索引擎框架,其性能可与 Perplexity和ChatGPT-Web相媲美。
项目地址:https://github.com/InternLM/MindSearch
在线使用:https://mindsearch.openxlab.org.cn/
【开源免费】Morphic是一个由AI驱动的搜索引擎。该项目开源免费,搜索结果包含文本,图片,视频等各种AI搜索所需要的必备功能。相对于其他开源AI搜索项目,测试搜索结果最好。
项目地址:https://github.com/miurla/morphic/tree/main
在线使用:https://www.morphic.sh/
【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。
项目地址:https://github.com/InternLM/xtuner
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0