近年来,大语言模型(LLM)已展现出卓越的通用能力,但其核心仍是静态的。面对日新月异的任务、知识领域和交互环境,模型无法实时调整其内部参数,这一根本性瓶颈日益凸显。
当我们将视野从提升静态模型的规模,转向构建能够实时学习和适应的动态智能体时,一个全新的范式——自进化智能体(Self-evolving Agents)——正引领着人工智能领域的变革。
然而,尽管学术界与工业界对自进化智能体的兴趣与日俱增,但整个领域仍缺乏一个系统性的梳理与顶层设计。多数研究将「演化」作为智能体整体框架的一个子集,未能深入回答该领域三个最根本的问题:智能体的哪些部分应该演化(What)?演化何时发生(When)?以及,演化如何实现(How)?
为应对上述挑战,普林斯顿大学联合多所顶尖机构的研究者们联合发布了首个全面且系统的自进化智能体综述。该综述旨在为这一新兴领域建立一个统一的理论框架和清晰的路线图,最终为实现通用人工智能(AGI)乃至人工超级智能(ASI)铺平道路。
为确保研究的严谨性,该综述首先为「自进化智能体」提供了一套形式化的定义,为整个领域的研究和讨论奠定了数学基础。
该综述的核心贡献是围绕「What、When、How、Where」四个维度,构建了一个用于分析和设计自进化智能体的完整框架,并系统梳理了相关的前沿技术。
此维度明确了智能体系统中可以进行自我提升的四大核心支柱:
演化的时机决定了学习与任务执行的关系,主要分为两大模式,每种模式下都可以运用上下文学习(ICL)、监督微调(SFT)和强化学习(RL)等范式。
实现演化的具体方法论,即智能体如何将经验和反馈转化为能力提升,主要分为三大范式。
此维度明确了自进化智能体的应用场域,展示了其在不同类型任务中的演化路径。
除了构建核心理论框架,该综述还详细探讨了自进化智能体的评估范式。评估自进化智能体不能再局限于静态的准确率,而必须考察其动态能力。
论文提出了五大评估目标:适应性(Adaptivity)、知识保留(Retention)、泛化性(Generalization)、效率(Efficiency)和安全性(Safety),并将其评估模式分为静态评估、短时程自适应评估和长时程终身学习评估,为衡量这一新物种的能力提供了标尺。
最后,该综述为领域的未来发展指明了方向,包括个性化 AI 智能体、提升泛化与跨域适应能力、构建安全可控的智能体、以及探索多智能体生态系统等关键挑战。
通过这份全面的综述,研究者和开发者可以获得一个结构化的视角,来理解、比较并设计下一代更强大、更鲁棒的自适应智能体系统。正如文中所指出的,自进化智能体的发展是通往人工超级智能(ASI)的关键基石,而解决好其在演化过程中的安全性、泛化性与可控性等挑战,将是未来研究的重中之重。
文章来自于微信公众号“机器之心”。
【开源免费】Browser-use 是一个用户AI代理直接可以控制浏览器的工具。它能够让AI 自动执行浏览器中的各种任务,如比较价格、添加购物车、回复各种社交媒体等。
项目地址:https://github.com/browser-use/browser-use
【开源免费】字节工作流产品扣子两大核心业务:Coze Studio(扣子开发平台)和 Coze Loop(扣子罗盘)全面开源,而且采用的是 Apache 2.0 许可证,支持商用!
项目地址:https://github.com/coze-dev/coze-studio
【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。
项目地址:https://github.com/n8n-io/n8n
在线使用:https://n8n.io/(付费)
【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。
项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file
【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。
项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file
在线使用:https://vectorvein.ai/(付费)
【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。
项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md
【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。
项目地址:https://github.com/labring/FastGPT
【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。
项目地址:https://github.com/microsoft/graphrag
【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。
项目地址:https://github.com/langgenius/dify
【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。
项目地址:https://github.com/infiniflow/ragflow/tree/main
【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目
项目地址:https://github.com/phidatahq/phidata
【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。
项目地址:https://github.com/TaskingAI/TaskingAI
【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。
项目地址:https://github.com/InternLM/xtuner
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0