随着大模型能力的跃迁,业界关注点正在从 “模型能不能做” 快速转向 “智能体能不能落地”。过去一年可以看到大量工作在提升智能体的有效性(effectiveness):如何让它更聪明、更稳、更会用工具、更能完成复杂任务。
但在真实应用里,另一个更 “硬” 的问题常常决定能否上线:高效性(efficiency)。智能体即便表现很好,如果每次都要消耗大量算力、时间与调用成本,也很难在生产环境大规模部署。
基于这一视角,论文整理并撰写了一篇面向 “高效智能体” 的综述,系统梳理当前主要方法,并从三个最关键的机制出发组织全文框架:记忆 — 工具学习 — 规划。论文从设计范式出发对代表性方法进行归纳总结,聚焦那些以效率为目标或能够提升效率的核心设计与实现路径,从而更清晰地呈现智能体在真实落地场景中的成本 — 性能权衡。



智能体要做长任务,离不开记忆。但把历史一股脑塞进提示词,会带来 token 暴涨和智能体处理长上下文能力下降。因此,高效记忆系统的关键在于把 “长历史” 加工成 “可用、可检索、可复用” 的信息资产。
论文按记忆生命周期梳理三步:构建 — 管理 — 访问。
另外,多智能体记忆也成为新趋势。相较于只靠通信,近年更多工作开始引入 “记忆” 这一概念来支撑规模化协作,论文将其概括为:共享记忆 / 本地记忆 / 混合记忆三类。

工具让智能体从 “会说” 变成 “能做”,但成本也最容易在工具链路里失控。论文按三条主线梳理提效思路:工具选择 — 工具调用 — 工具融合推理。

规划决定智能体如何在多步决策空间里行动。效率问题要么来自单体推理 “想太深、搜太贵”,要么来自多体协作 “聊太多、通信太重”。因此论文从两条线展开:单智能体规划与多智能体协作规划。

在谈记忆、工具学习与规划的提效方案之前,先要把 “尺子” 定清楚:高效到底怎么量?
论文强调,效率必须建立在有效性之上。省了资源却显著掉性能,不算高效。因此论文采用的定义是:在给定预算下取得更好的效果,或在相近效果下消耗更少资源。
基于这一视角,论文先梳理了以有效性为主的 benchmark,并进一步汇总了与效率相关的评测内容:一方面,整理了在 benchmark 中显式纳入效率信号(成本、延迟、调用次数等)的评测设置;另一方面,总结了智能体方法中常用的效率指标,用于刻画 “省在哪儿、省多少”。
论文同时也提出了目前的一些挑战与展望:
1)统一评测框架:指标口径统一,模块开销边界清楚,才能真正让各个智能体方法可比可复现。
2)智能体的隐式推理(Latent Reasoning):大模型侧的隐式推理正在升温,但面向智能体的研究仍相对稀缺。由于智能体链路更长、更复杂,还要处理工具调用、规划与记忆等环节,如何把中间推理 “做在隐式空间里”、在不掉效果的前提下降低成本,既是挑战,也是机会。
3)面向部署设计:在多智能体场景下,需要把部署成本纳入考量,核心问题是投入产出比。也就是说,增加智能体带来的收益,是否足以覆盖新增的开销。
4)多模态效率:多模态智能体发展很快,但效率研究仍相对欠缺。文本智能体的一些提效思路可以借鉴,但是直接迁移却并不容易,因为多模态智能体的感知输入、行为空间与任务结构更复杂、交互成本更高。因此,如何在多模态场景下系统地兼顾效果与成本,仍是亟待解决的关键问题。
文章来自于“机器之心”,作者 “机器之心”。
【开源免费】Browser-use 是一个用户AI代理直接可以控制浏览器的工具。它能够让AI 自动执行浏览器中的各种任务,如比较价格、添加购物车、回复各种社交媒体等。
项目地址:https://github.com/browser-use/browser-use
【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。
项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0