AI技术研报-这里有最前沿的人工智能技术解读

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈

Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈

Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈

哈佛斯坦福MIT等机构首次提出「精度感知」scaling law,揭示了精度、参数规模、数据量之间的统一关系。数据量增加,模型对量化精度要求随之提高,这预示着AI领域低精度加速的时代即将结束!

来自主题: AI技术研报
6920 点击    2024-11-17 14:26
视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

卡内基梅隆大学提出了视频生成模型加速方法Run-Length Tokenization(RLT),被NeurIPS 2024选为Spotlight论文。 在精度几乎没有损失的前提下,RLT可以让模型训练和推理速度双双提升。

来自主题: AI技术研报
5623 点击    2024-11-17 14:10
Nature:「人类亲吻难题」彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具

Nature:「人类亲吻难题」彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具

Nature:「人类亲吻难题」彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具

最近,Nature上的一项研究,全面驳斥了LLM具有类人推理能力的说法。研究者设定的「人类亲吻难题」把7个大模型彻底绕晕。最终研究者表示,与其说LLM是科学理论,不如说它们更接近工具,比如广义导数。

来自主题: AI技术研报
8067 点击    2024-11-16 15:52
过程奖励模型PRM成版本答案!谷歌DeepMind全自动标注逐步骤奖励PAV,准确率提升8%

过程奖励模型PRM成版本答案!谷歌DeepMind全自动标注逐步骤奖励PAV,准确率提升8%

过程奖励模型PRM成版本答案!谷歌DeepMind全自动标注逐步骤奖励PAV,准确率提升8%

通过过程奖励模型(PRM)在每一步提供反馈,并使用过程优势验证器(PAV)来预测进展,从而优化基础策略,该方法在测试时搜索和在线强化学习中显示出比传统方法更高的准确性和计算效率,显著提升了解决复杂问题的能力。

来自主题: AI技术研报
5256 点击    2024-11-16 15:41
NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。

来自主题: AI技术研报
2914 点击    2024-11-16 15:21
率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。

来自主题: AI技术研报
2927 点击    2024-11-16 15:13
使用LLM结合金融数据和新闻文章预测股票价格

使用LLM结合金融数据和新闻文章预测股票价格

使用LLM结合金融数据和新闻文章预测股票价格

预测金融市场和股票价格变动需分析公司表现、历史价格、行业事件及人类因素(如社交媒体和新闻报道)。

来自主题: AI技术研报
6052 点击    2024-11-16 14:38
集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?

集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?

集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?

MEGA-Bench是一个包含500多个真实世界任务的多模态评测套件,为全面评估AI模型提供了高效工具。研究人员发现,尽管顶级AI模型在多个任务中表现出色,但在复杂推理和跨模态理解方面仍有提升空间。

来自主题: AI技术研报
7102 点击    2024-11-15 15:37
NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

这篇文章获选 Neurips 2024 Spotlight,作者均来自于伊利诺伊大学香槟分校计算机系。第一作者是博士生林啸,指导老师是童行行教授。所在的 IDEA 实验室的研究兴趣涵盖图机器学习、可信机器学习、LLM 优化以及数据挖掘等方面。

来自主题: AI技术研报
4468 点击    2024-11-15 15:34
Make U-Nets Great Again!北大&华为提出扩散架构U-DiT,六分之一算力即可超越DiT

Make U-Nets Great Again!北大&华为提出扩散架构U-DiT,六分之一算力即可超越DiT

Make U-Nets Great Again!北大&华为提出扩散架构U-DiT,六分之一算力即可超越DiT

Sora 的发布让广大研究者及开发者深刻认识到基于 Transformer 架构扩散模型的巨大潜力。作为这一类的代表性工作,DiT 模型抛弃了传统的 U-Net 扩散架构,转而使用直筒型去噪模型。鉴于直筒型 DiT 在隐空间生成任务上效果出众,后续的一些工作如 PixArt、SD3 等等也都不约而同地使用了直筒型架构。

来自主题: AI技术研报
2900 点击    2024-11-15 15:09
最近几年TOP100的AI论文背后,揭示了硅谷科技创新的一个新配方……

最近几年TOP100的AI论文背后,揭示了硅谷科技创新的一个新配方……

最近几年TOP100的AI论文背后,揭示了硅谷科技创新的一个新配方……

最近,专注做AI转型的Zeta Alpha对2023年引用次数最多的 AI 论文进行了排名,列出了影响力最高的100篇论文,引发了业界热议,并且就论文的机构也做了一个梳理。

来自主题: AI技术研报
5908 点击    2024-11-15 10:51
自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

自一致性首选项优化SCPO,让LLM多次回答同一个问题,选输出频率最高的答案 |Meta最新

传统的训练方法通常依赖于大量人工标注的数据和外部奖励模型,这些方法往往受到成本、质量控制和泛化能力的限制。因此,如何减少对人工标注的依赖,并提高模型在复杂推理任务中的表现,成为了当前的主要挑战之一。

来自主题: AI技术研报
6534 点击    2024-11-14 14:42
深度解析Recraft V3:突破文本渲染限制,「文生图」黑马是怎样炼成的?

深度解析Recraft V3:突破文本渲染限制,「文生图」黑马是怎样炼成的?

深度解析Recraft V3:突破文本渲染限制,「文生图」黑马是怎样炼成的?

Recraft团队通过结合TextDiffuser-2技术和自训练的大型语言模型,提升了文本到图像渲染的质量和准确性,不过现有模型在处理复杂语言如中文和未明确指定的文本时,仍存在渲染不准确的问题。

来自主题: AI技术研报
7254 点击    2024-11-14 14:40
穹彻智能-上交大最新Nature子刊速递:解析深度学习驱动的视触觉动态重建方案

穹彻智能-上交大最新Nature子刊速递:解析深度学习驱动的视触觉动态重建方案

穹彻智能-上交大最新Nature子刊速递:解析深度学习驱动的视触觉动态重建方案

随着人形机器人技术的迅猛发展,如何有效获取高质量的操作数据成为核心挑战。鉴于人类操作行为的复杂性和多样性,如何从真实世界中精准捕捉手与物体交互的完整状态,成为推动人形机器人操作技能学习的关键所在。

来自主题: AI技术研报
6095 点击    2024-11-14 14:30
1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化

1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化

1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化

随着大语言模型(LLMs)在处理复杂任务中的广泛应用,高质量数据的获取变得尤为关键。为了确保模型能够准确理解并执行用户指令,模型必须依赖大量真实且多样化的数据进行后训练。然而,获取此类数据往往伴随着高昂的成本和数据稀缺性。因此,如何有效生成能够反映现实需求的高质量合成数据,成为了当前亟需解决的核心挑战。

来自主题: AI技术研报
6126 点击    2024-11-14 14:07
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

30多年的数学猜想首次获得了进展!Meta等学者提出的PatternBoost,使用Transformer构造了一个反例,反驳了一个已悬而未决30年的猜想。是否所有数学问题都适合机器学习技术?这样的未来太令人期待了。

来自主题: AI技术研报
6063 点击    2024-11-14 10:46
突破次元壁!新加坡国立发布GenXD:拿捏真实感3D、4D动态场景

突破次元壁!新加坡国立发布GenXD:拿捏真实感3D、4D动态场景

突破次元壁!新加坡国立发布GenXD:拿捏真实感3D、4D动态场景

GenXD模型结合CamVid-30K数据集突破了3D和4D场景生成的挑战,能从单张图片生成逼真的动态3D和4D场景。这一进展为虚拟世界构建带来新的可能性,让动态场景的生成更加快速和真实。

来自主题: AI技术研报
6737 点击    2024-11-14 10:31
首个多模态连续学习综述,港中文、清华、UIC联合发布

首个多模态连续学习综述,港中文、清华、UIC联合发布

首个多模态连续学习综述,港中文、清华、UIC联合发布

连续学习(CL)旨在增强机器学习模型的能力,使其能够不断从新数据中学习,而无需进行所有旧数据的重新训练。连续学习的主要挑战是灾难性遗忘:当任务按顺序训练时,新的任务训练会严重干扰之前学习的任务的性能,因为不受约束的微调会使参数远离旧任务的最优状态。

来自主题: AI技术研报
3983 点击    2024-11-13 16:02
一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

一个有意思的Prompt演员框架,LLMs被当成演员;提示被当成剧本;LLM输出被当成表演,o1从76%提高到87%

如何更好地设计提示词(Prompt)一直是大家关注的焦点。最近,一个独特的研究视角引起了广泛关注:将LLMs视为“演员”,将提示词视为“剧本”,将模型输出视为“表演”。

来自主题: AI技术研报
3108 点击    2024-11-13 14:19