
ICLR 2025 Spotlight | 让城市「动」起来!DynamicCity突破4D大场景生成技术边界
ICLR 2025 Spotlight | 让城市「动」起来!DynamicCity突破4D大场景生成技术边界过去一年,3D 生成技术迎来爆发式增长。在大场景生成领域,涌现出一批 “静态大场景生成” 工作,如 SemCity [1]、PDD [2]、XCube [3] 等。这些研究推动了 AI 利用扩散模型的强大学习能力来解构和创造物理世界的趋势。
过去一年,3D 生成技术迎来爆发式增长。在大场景生成领域,涌现出一批 “静态大场景生成” 工作,如 SemCity [1]、PDD [2]、XCube [3] 等。这些研究推动了 AI 利用扩散模型的强大学习能力来解构和创造物理世界的趋势。
“凡我无法创造的,我就无法真正理解。” -- 费曼
Transformer 架构在过去几年中通过注意力机制在多个领域(如计算机视觉、自然语言处理和长序列任务)中取得了非凡的成就。然而,其核心组件「自注意力机制」 的计算复杂度随输入 token 数量呈二次方增长,导致资源消耗巨大,难以扩展到更长的序列或更大的模型。
我们正见证一场静默的推理革命。传统AI训练如同盲人摸象,依赖碎片化文本拼凑认知图景,DeepSeek-AI团队的CODEI/O范式首次让机器真正"理解"了推理的本质——它将代码执行中蕴含的逻辑流,转化为可解释、可验证的思维链条,犹如为AI装上了解剖推理过程的显微镜。
RedStone是一个高效构建大规模指定领域数据的处理管道,通过优化数据处理流程,从Common Crawl中提取了RedStone-Web、RedStone-Code、RedStone-Math和RedStone-QA等数据集,在多项任务中超越了现有开源数据集,显著提升了模型性能。
强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!
用扩散模型替代自回归,大模型的逆诅咒有解了!
国产AI几何模型性能达IMO金牌水平,打平谷歌DeepMind最新AlphaGeometry系列——
用代码训练大模型思考,其他方面的推理能力也能提升。
那么,DeepSeek-R1 的 ARC-AGI 成绩如何呢?根据 ARC Prize 发布的报告,R1 在 ARC-AGI-1 上的表现还赶不上 OpenAI 的 o1 系列模型,更别说 o3 系列了。但 DeepSeek-R1 也有自己的特有优势:成本低。
Anthropic,公布了新的AI模型防护方法,在之后约48小时内,无人完全攻破新系统,将赏金提高到了最高2万美元。新方法真这么强?
DeepSeek团队最新力作一上线,就获得Ai2研究所大牛推荐,和DeepSeek铁粉们的热情研读!他们提出的CodeI/O全新方法,通过代码提取了LLM推理模式,在逻辑、数学等推理任务上得到显著改进。
Scale AI 等提出的新基准再次暴露了大语言模型的弱点。
这次不是卷参数、卷算力,而是卷“跨界学习”——
近年来,大语言模型(LLMs)取得了突破性进展,展现了诸如上下文学习、指令遵循、推理和多轮对话等能力。目前,普遍的观点认为其成功依赖于自回归模型的「next token prediction」范式。
本文的作用是帮你把问题具体化,这是用好DeepSeek-R1等推理型模型的前置步骤。
自然语言 token 代表的意思通常是表层的(例如 the 或 a 这样的功能性词汇),需要模型进行大量训练才能获得高级推理和对概念的理解能力,
AI搜索“老大哥”Perplexity,刚刚也推出了自家的Deep Research——随便给个话题,就能生成有深度的研究报告。
全球有多少AI算力?算力增长速度有多快?在这场AI「淘金热」中,都有哪些新「铲子」?AI初创企业Epoch AI发布了最新全球硬件估算报告。
英伟达巧妙地将DeepSeek-R1与推理时扩展相结合,构建了全新工作流程,自动优化生成GPU内核,取得了令人瞩目的成果。
问题挺严重,大模型说的话可不能全信。
自一月以来, DeepSeek 在 AI 领域引发了极大的热度,也出现了大量分析文章。其中来自 Leonis Capital 于 2.6 发表于 Substack 上的文章:「DeepSeek: A Technical and Strategic Analysis for VCs and Startups」
人类智慧的一大特征是能够分步骤创造复杂作品,例如绘画、手工艺和烹饪等,这些过程体现了逻辑与美学的融合。
兔子通过两只耳朵可以准确感知捕食者的一举一动,造就了不同品种广泛分布在世界各地的生命奇迹;同样人也需要通过双耳沉浸式享受电影视听盛宴、判断驾驶环境和感知周围活动状态。
最近读者后台留言,问有没有好用的工作流平台。确实,对于大多数流程相对固定的任务,采用工作流完成确实是最优解,这种需求一直存在。
最新大语言模型推理测试引众议,DeepSeek R1常常在提供错误答案前就“我放弃”了?? Cursor刚刚参与了一项研究,他们基于NPR周日谜题挑战(The Sunday Puzzle),构建了一个包含近600个问题新基准测试。
在当下的技术领域中,人像视频生成(Human-Video-Animation)作为一个备受瞩目的研究方向,正不断取得新的进展。人像视频生成 (Human-Video-Animation) 是指从某人物的视频中获取肢体动作和面部表情序列,来驱动其他人物个体的参考图像来生成视频。
中国首个全自研空间智能AI诞生了,单图即可生成360度无限3D场景,实时互动自由探索。这不仅是技术的革新,更预示着,游戏电影等领域即将迎来颠覆性的变革。
7B大小的视频理解模型中的新SOTA,来了!
近日,微软和剑桥大学公布推理新方法:多模态思维可视化MVoT。新方法可以边推理,边「想象」,同时利用文本和图像信息学习,在实验中比CoT拥有更好的可解释性和稳健性,复杂情况下甚至比CoT强20%。还可以与CoT组合,进一步提升模型性能。