
大模型到底是怎么「思考」的?第一篇系统性综述SAE的文章来了
大模型到底是怎么「思考」的?第一篇系统性综述SAE的文章来了在 ChatGPT 等大语言模型(LLMs)席卷全球的今天,越来越多的研究者意识到:我们需要的不只是 “会说话” 的 LLM,更是 “能解释” 的 LLM。
在 ChatGPT 等大语言模型(LLMs)席卷全球的今天,越来越多的研究者意识到:我们需要的不只是 “会说话” 的 LLM,更是 “能解释” 的 LLM。
无需蒸馏任何大规模语言模型,小模型也能自给自足、联合提升?
强化学习(RL)已经成为当今 LLM 不可或缺的技术之一。从大模型对齐到推理模型训练再到如今的智能体强化学习(Agentic RL),你几乎能在当今 AI 领域的每个领域看到强化学习的身影。
尽管人工智能(AI)在飞速发展,当前 AI 开发仍严重依赖人类专家大量的手动实验和反复的调参迭代,过程费时费力。
大语言模型(LLMs)在决策场景中常因贪婪性、频率偏差和知行差距表现欠佳。研究者提出强化学习微调(RLFT),通过自我生成的推理链(CoT)优化模型,提升决策能力。实验表明,RLFT可增加模型探索性,缩小知行差距,但探索策略仍有改进空间。
一个融合真实地理空间与AI生成技术的开放世界模拟平台,由Genesis物理引擎驱动,支持人类与机器人在社区中共同互动、成长与演化。
一个真实世界模拟器。
随着 AI4Science 的浪潮席卷科研各领域,如何将强大的人工智能模型真正用于分析科学数据、构建数学模型、发现科学规律,正成为该领域亟待突破的关键问题。
只需修改两行代码,RAG向量检索效率暴涨30%!
LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功
在家庭服务机器人领域,如何让机器人理解开放环境中的自然语言指令、动态规划行动路径并精准执行操作,一直是学界和工业界的核心挑战。
“边看边画,边画边想”,让大模型掌握空间思考能力,结果直接实现空间推理任务新SOTA。
在信息爆炸的时代,推荐系统已成为我们获取资讯、商品和服务的核心入口。无论是电商平台的 “猜你喜欢”,还是内容应用的信息流,背后都离不开推荐算法的默默耕耘
2024年全球AI移动应用收入达12亿美元,同比猛增179%。图片/视频生成应用主要由亚洲市场驱动,细分需求兴起;ChatBot领域ChatGPT占据主导,但套壳产品表现意外强劲,用户分层明显(高知男性与年轻女性为主)。AI赋能生产力工具收入显著增长34.9%,但大厂优势依旧显著。
生成图像这件事,会推理的AI才是好AI。 举个例子,以往要是给AI一句这样的Prompt: (3+6)条命的动物。 我们人类肯定一眼就知道是猫咪,但AI的思考过程却是这样的:
6 月 16 日,腾讯 AI Lab 推出并开源 SongGeneration 音乐生成大模型,专注解决音乐 AIGC 中音质、音乐性与生成速度这三大共性难题
预训练模型能否作为探索新架构设计的“底座” ? 最新答案是:yes!
长期以来主流的代码修复评测基准SWE-bench面临数据过时、覆盖面窄、手动维护成本高等问题,严重制约了AI模型真实能力的展现。
人人都绕不开的推荐系统,如今正被注入新的 AI 动能。 随着 AI 领域掀起一场由大型语言模型(LLM)引领的生成式革命,它们凭借着强大的端到端学习能力、海量数据理解能力以及前所未有的内容生成潜力,开始重塑各领域的传统技术栈。
近年来,强化学习 (RL) 在提升大型语言模型 (LLM) 的链式思考 (CoT) 推理能力方面展现出巨大潜力,其中直接偏好优化 (DPO) 和组相对策略优化 (GRPO) 是两大主流算法。
生成模型会重现识别模型的历史吗?
大语言模型解决不等式证明问题时,可以给出正确答案,但大多数时候是靠猜。推理过程经不起推敲,逻辑完全崩溃。
剑桥大学和范德夏尔实验室在 ICML 2024 上发表的立场论文,直接挑战了当前Agent开发的核心假设:我们一直在用错误的方式让Agent"自我改进"。
只需要动动嘴就可以驱动GUI代理?
AI也有量子叠加态了?
AI上瘾堪比「吸毒」!MIT最新研究惊人发现:长期依赖大模型,学习能力下降、大脑受损,神经连接减少47%。AI提高效率的说法,或许根本就是误解!
普林斯顿大学和Meta联合推出的新框架LinGen,以MATE线性复杂度块取代传统自注意力,将视频生成从像素数的平方复杂度压到线性复杂度,使单张GPU就能在分钟级长度下生成高质量视频,大幅提高了模型的可扩展性和生成效率。
2025年1月到5月间,斯坦福大学的研究团队完成了一项本应在AI热潮开始时就进行的调查。他们采访了1500名美国员工和52名AI专家,评估了104个职业中的844项具体任务。
为此,香港中文大学、字节跳动Seed和斯坦福大学研究团队出手,提出了一种面向同声传译的序贯策略优化框架 (Sequential Policy Optimization for Simultaneous Machine Translation, SeqPO-SiMT)。
医学世界模型(MeWM)是一种创新的AI系统,能够模拟疾病演变并预测不同治疗方案下的肿瘤变化。通过生成术后肿瘤图像,可以帮助医生在术前评估治疗效果,优化治疗方案,显著提升临床决策的准确性,为精准医疗提供了有力支持。