深入AI Agent内核: Google gemini-cli 源码深度解构
深入AI Agent内核: Google gemini-cli 源码深度解构随着大语言模型与开发工具链的深度融合,命令行终端正被重塑为开发者的AI协作界面。本文以 Google gemini-cli 为范本,通过源码解构,系统性分析其 Agent 内核、ReAct 工作流、工具调用与上下文管理等核心模块的实现原理。为希望构建终端 Agent 的开发者,提供工程实现的系统化参考。
随着大语言模型与开发工具链的深度融合,命令行终端正被重塑为开发者的AI协作界面。本文以 Google gemini-cli 为范本,通过源码解构,系统性分析其 Agent 内核、ReAct 工作流、工具调用与上下文管理等核心模块的实现原理。为希望构建终端 Agent 的开发者,提供工程实现的系统化参考。
昨晚,数学界炸了!由HarmonicMath开发的AI数学家「亚里士多德」(Aristotle),100%独立完成了埃尔德什问题#124。它在Lean证明系统中,耗时仅6个小时,验证只需1分钟。
对于谷歌(Google)而言,刚刚过去的一周可以看作其人工智能战略转型的关键节点。随着 Gemini 3 的正式发布,以及名为 Nano Banana Pro 的新模型在社交媒体与开发者社区中迅速走红,这家科技公司正在重新找回自己在 AI 领域的节奏与底气。
a16z 指出:“模型开发的进展正在简化整个基础设施栈,使得语音智能体具备更低延迟和更高性能。这一提升主要出现在过去六个月内,得益于新一代对话模型的出现。”基于这些趋势,Deepgram 与 Opus Research 合作开展的《2025 语音 AI 状况调查报告》,基于 400 位商业领袖的洞察,涵盖十多个行业,分析了语音 AI 的应用现状与关键特性。
Digital Connexion 是由穆克什·安巴尼的依赖工业有限公司 、布鲁克菲尔德资产管理公司以及 Digital Realty Trust 共同组建的合资企业,已签署协议计划到 2030 年投资 110 亿美元在印度南部开发 数据 中心设施,标志着对科技领域增长最快赛道之一的最新投资。
Google 前天发布了 Antigravity,一款号称“下一代 agentic 开发平台”的全新 IDE。官方宣传强调它能规划、执行、验证整个开发流程,似乎代表着 AI 编程进入了新的阶段。然而,最早一批上手使用的开发者却纷纷吐槽:任务跑着跑着就因“模型过载”中断,信用额度几十分钟内耗尽,连完整测试都难以完成,体验堪称“开局即崩”。
RAG效果不及预期,试试这10个上下文处理优化技巧。对大部分开发者来说,搭一个RAG或者agent不难,怎么把它优化成生产可用的状态最难。在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。
如果说过去一年里,AI 让开发者生产力翻倍,那么如今它也开始以同样的速度放大风险。 上周,Google 刚刚推出的基于 Gemini 的全新 AI 编码工具 Antigravity,上线不到 24 小时便被一名安全研究员攻破,指出它存在严重的安全Bug。
在软件开发领域,需求工程(Requirements Engineering, RE)一直是项目成功的关键环节。然而,传统 RE 方法面临着效率低下、需求变更频繁等挑战。根据 Standish Group 的报告,仅有 31% 的软件项目能在预算和时间内完成,而需求相关问题导致的项目失败率高达 37%。
近期,一支来自美国哈佛大学和美国斯坦福大学等联合团队真的做到了——他们集成 40 余种衰老时钟模型开发了一个名为 ClockBase Agent 的平台,让 AI 在 200 万份人类和小鼠的分子组学数据里“挖宝”,并找出了超过 500 种可能让生物年龄倒退的干预措施。