如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!近来,世界模型(World Model)很火。多个 AI 实验室纷纷展示出令人惊艳的 Demo:仅凭一张图片甚至一段文字,就能生成一个可交互、可探索的 3D 世界。这些演示当然很是炫酷,它们展现了 AI 强大的生成能力。
近来,世界模型(World Model)很火。多个 AI 实验室纷纷展示出令人惊艳的 Demo:仅凭一张图片甚至一段文字,就能生成一个可交互、可探索的 3D 世界。这些演示当然很是炫酷,它们展现了 AI 强大的生成能力。
刚刚,一家AI公司的融资引发了圈内热议。
在腾讯四年,朱庆旭曾将多种训练数据喂给具身模型,最终他得出结论:“基于遥操作数据训练的主流方案,有着原理性缺陷。”
大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。
在过去两年,大语言模型 (LLM) + 外部工具的能力,已成为推动 AI 从 “会说” 走向 “会做” 的关键机制 —— 尤其在 API 调用、多轮任务规划、知识检索、代码执行等场景中,大模型要想精准调用工具,不仅要求模型本身具备推理能力,还需要借助海量高质量、针对性强的函数调用训练数据。
智能体自进化,阿里开源了新成果。
无需重新训练,也能一键恢复模型的安全意识了。
人类高级视觉皮层在个体间存在显著的功能差异,而构建大脑编码模型(brain encoding models)—— 即能够从视觉刺激(如图像)预测人脑神经响应的计算模型 —— 是理解人类视觉系统如何表征世界的关键。传统视觉编码模型通常需要为每个新被试采集大量数据(数千张图像对应的脑活动),成本高昂且难以推广。
无需额外训练即可适配预训练生成模型的编辑方法,凭借灵活、高效的特性,已成为视觉生成领域的研究热点。这类方法通过操控 Attention 机制(如 Prompt-to-Prompt、MasaCtrl)实现文本引导编辑,但当前技术存在两大核心痛点,严重限制其在复杂场景的应用
凌晨,谷歌终极杀器Gemini 3重磅来袭,一出手就是Pro顶配版,号称「史上最强推理+多模态+氛围编程」三合一AI战神!基准测试横扫全场,就连GPT-5.1也被斩于马下,AI的下一个时代开启。而且,一上来就是顶配的Gemini 3 Pro——迄今推理最强,多模态理解最强,以及「智能体」+「氛围编程」最强的模型!