AI资讯新闻榜单内容搜索-模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 模型
哈工大深圳团队推出Uni-MoE-2.0-Omni:全模态理解、推理及生成新SOTA

哈工大深圳团队推出Uni-MoE-2.0-Omni:全模态理解、推理及生成新SOTA

哈工大深圳团队推出Uni-MoE-2.0-Omni:全模态理解、推理及生成新SOTA

全模态大模型(Omnimodal Large Models, OLMs)能够理解、生成、处理并关联真实世界多种数据类型,从而实现更丰富的理解以及与复杂世界的深度交互。人工智能向全模态大模型的演进,标志着其从「专才」走向「通才」,从「工具」走向「伙伴」的关键点。

来自主题: AI技术研报
7410 点击    2025-11-26 09:13
浅谈一下RLVR&SFT分别对模型显性知识学习和隐参数空间结构扰动背后的一些猜想

浅谈一下RLVR&SFT分别对模型显性知识学习和隐参数空间结构扰动背后的一些猜想

浅谈一下RLVR&SFT分别对模型显性知识学习和隐参数空间结构扰动背后的一些猜想

最近不论是在学术圈还是产业实践中,对于RLVR和传统SFT之间的区别与联系,以及RL本身基于奖励建模反馈机制并结合不同的策略优化算法过程中对模型显性知识的学习和隐参数空间的变化的讨论热度一直很高。

来自主题: AI技术研报
5968 点击    2025-11-26 09:12
从推荐算法优化到AI4S、Pico和大模型,杨震原长文揭秘字节跳动的技术探索

从推荐算法优化到AI4S、Pico和大模型,杨震原长文揭秘字节跳动的技术探索

从推荐算法优化到AI4S、Pico和大模型,杨震原长文揭秘字节跳动的技术探索

大家好,很高兴在字节技术奖学金,这样一个场合见到大家。我自己是一个技术爱好者,2014年我加入字节跳动。从最初负责搭建新的推荐系统开始,到现在已经有快12年了。这些年来,也一路参与了字节很多的技术探索。

来自主题: AI资讯
7097 点击    2025-11-26 09:05
与Banana Pro过过招,国产Libcom图像合成工作台开启Labubu漫游记

与Banana Pro过过招,国产Libcom图像合成工作台开启Labubu漫游记

与Banana Pro过过招,国产Libcom图像合成工作台开启Labubu漫游记

2025 年,AIGC 热度再冲新高:从社交头像、电商海报到影视分镜,AI 生成内容已全面渗透日常创作。在这股浪潮中,Nano Banana、Qwen Edit 等通用图像编辑大模型功能强大,涵盖了广泛的图像编辑场景。特别是最新爆火的 Nano Banana Pro 能将文字指令转化为高精度图像,精准呈现复杂场景。但是上述图像编辑大模型在一些细分领域的表现仍有不足,并且用于简单任务性价比不高。

来自主题: AI资讯
7269 点击    2025-11-25 17:18
别装了,AI巨头们!谁在卡脖子,谁在割韭菜?这张图一目了然

别装了,AI巨头们!谁在卡脖子,谁在割韭菜?这张图一目了然

别装了,AI巨头们!谁在卡脖子,谁在割韭菜?这张图一目了然

卡内基梅隆揭秘美国AI产业链:谁能扼住AI的喉咙?OpenAI和迪士尼如何捆绑,AMD、软银和英伟达究竟在下哪盘棋?卡内基梅隆大学刚刚抛出一颗「产业核弹」:首个系统刻画数据、算力、模型、资本乃至人才流向的AI供应链数据集。

来自主题: AI技术研报
7915 点击    2025-11-25 16:35
念首诗,就能让AI教你造核弹!Gemini 100%中招

念首诗,就能让AI教你造核弹!Gemini 100%中招

念首诗,就能让AI教你造核弹!Gemini 100%中招

最新研究发现,只要把恶意指令写成一首诗,就能让Gemini和DeepSeek等顶尖模型突破安全限制。这项针对25个主流模型的测试显示,面对「诗歌攻击」,百亿美金堆出来的安全护栏瞬间失效,部分模型的防御成功率直接归零。最讽刺的是,由于小模型「读不懂」诗里的隐喻反而幸免于难,而「有文化」的大模型却因为过度解读而全线破防。

来自主题: AI资讯
7736 点击    2025-11-25 15:31
AAAI 2026 Oral | 悉尼科技大学联合港理工打破「一刀切」,联邦推荐如何实现「千人千面」的图文融合?

AAAI 2026 Oral | 悉尼科技大学联合港理工打破「一刀切」,联邦推荐如何实现「千人千面」的图文融合?

AAAI 2026 Oral | 悉尼科技大学联合港理工打破「一刀切」,联邦推荐如何实现「千人千面」的图文融合?

在推荐系统迈向多模态的今天,如何兼顾数据隐私与个性化图文理解?悉尼科技大学龙国栋教授团队联合香港理工大学杨强教授、张成奇教授团队,提出全新框架 FedVLR。该工作解决了联邦环境下多模态融合的异质性难题,已被人工智能顶级会议 AAAI 2026 接收为 Oral Presentation。

来自主题: AI技术研报
7776 点击    2025-11-25 15:30