DeepSeek-V3.2系列开源,性能直接对标Gemini-3.0-Pro
DeepSeek-V3.2系列开源,性能直接对标Gemini-3.0-Pro突袭!ChatGPT发布三周年,DeepSeek嚯一下发出两个模型:DeepSeek-V3.2和DeepSeek-V3.2-Speciale。前者聚焦平衡实用,适用于日常问答、通用Agent任务、真实应用场景下的工具调用。
突袭!ChatGPT发布三周年,DeepSeek嚯一下发出两个模型:DeepSeek-V3.2和DeepSeek-V3.2-Speciale。前者聚焦平衡实用,适用于日常问答、通用Agent任务、真实应用场景下的工具调用。
随着大语言模型与开发工具链的深度融合,命令行终端正被重塑为开发者的AI协作界面。本文以 Google gemini-cli 为范本,通过源码解构,系统性分析其 Agent 内核、ReAct 工作流、工具调用与上下文管理等核心模块的实现原理。为希望构建终端 Agent 的开发者,提供工程实现的系统化参考。
6B小模型,首日下载量高达50万次,上线不到两天直接把HuggingFace两个榜单都冲了个第一。
如果AI的终极使命是拓展人类认知的边界,那么“研究”——这项系统性探索未知的核心活动,无疑是其最重要的试金石。2024年,AI Agent技术迎来突破性进展,一个名为 Deep Research(深度研究) 的方向正以前所未有的速度站上风口,成为推动“AI应用元年”的真正引擎。
在当前的情感计算研究中,存在一个显著的“断层”:我们拥有越来越精准的情感识别算法(输入端),也有了逼真的语音和面部生成技术(输出端),但连接这两端的“中间层”却鲜有人问津。机器能识别出你在愤怒,也能模拟出抱歉的语气,但它真的理解愤怒的起因吗?它能基于这种理解去调整后续的决策逻辑吗?
当AI开始学会「摸鱼」,整个行业都该警醒了。
一般人和 ChatGPT 聊天时,往往不会在意要不要讲究礼貌。但来自爱荷华大学的一项最新研究显示:即便回答内容几乎相同,对 ChatGPT 粗鲁无礼也会让你花费更高的输出成本。
从“在线训练”到“离线建图”,扩散模型速度再突破!
随着大型语言模型在各类任务中展现出卓越的生成与推理能力,如何将模型输出精确地追溯到其内部计算过程,已成为 AI 可解释性研究的重要方向。然而,现有方法往往计算代价高昂、难以揭示中间层的信息流动;同时,不同层面的归因(如 token、模型组件或表示子空间)通常依赖各自独立的特定方法,缺乏统一且高效的分析框架。
导读 过去两年,小语言模型(SLM)在业界备受关注:参数更少、结构更轻,理应在真实部署中 “更快”。但只要真正把它们跑在 GPU 上,结论往往令人意外 —— 小模型其实没有想象中那么快。