在这个开源「从夯到拉」榜单,我终于明白中国 AI 为什么能逆袭
在这个开源「从夯到拉」榜单,我终于明白中国 AI 为什么能逆袭最近几天,一张开源模型的等级列表在 X 上被疯狂转载。 从夯到拉,国产开源模型排在了数一数二的位置,DeepSeek、Qwen、Kimi、智谱、还有 MiniMax 是全球开源模型的前五名。
最近几天,一张开源模型的等级列表在 X 上被疯狂转载。 从夯到拉,国产开源模型排在了数一数二的位置,DeepSeek、Qwen、Kimi、智谱、还有 MiniMax 是全球开源模型的前五名。
通用大模型(LLM)的狂飙突进,终于在医疗垂直领域的「最后一公里」撞上了硬墙。虽然 ChatGPT 在 USMLE(美国执业医师资格考试)中表现优异,但在面对需要「火眼金睛」和「毫厘必争」的心脏手术台上,通用大模型的表现究竟如何?
就在刚刚,英伟达正式开源发布了其新一代AI模型:NVIDIA Nemotron 3。Nemotron 3 系列由三种型号组成:Nano、Super 和 Ultra。官方介绍其具备强大的智能体、推理和对话能力。
正如奥特曼执意打造硬件,试图打破手机屏束缚,要让 AI 感受物理世界;Looki 的诞生也源于同样的渴望:补齐大模型「感官智能」的最后拼图,将现实场景实时转化为上下文,驱动人机交互从「被动问答」进化为「主动共鸣」。
“与AGI太过遥远的炒作相比,我非常喜欢这种 3 到 5 年的时间窗口。”“AI 现在最大的问题,已经不是不够聪明,而是太难真正落地。”这些非常务实的观点,并不是出自AI怀疑论者。相反,它出自硅谷圈内那位“工程与学术”的双修神话:
从 0 到上线,在OpenAI内部,安卓版 Sora经历的时间只有 28 天,而且期间只用了 2-3 名员工。
过去三年,扩散模型席卷图像生成领域。以 DiT (Diffusion Transformer) 为代表的新一代架构不断刷新图像质量的极限,让模型愈发接近真实世界的视觉规律。
南洋理工大学研究人员构建了EHRStruct基准,用于评测LLM处理结构化电子病历的能力。该基准涵盖11项核心任务,包含2200个样本,按临床场景、认知层级和功能类别组织。研究发现通用大模型优于医学专用模型,数据驱动任务表现更强,输入格式和微调方式对性能有显著影响。
近期,强化学习(RL)技术在提升语言模型的推理能力方面取得了显著成效。
在Anthropic,有一位驻场哲学家Amanda Askell专门研究如何与AI模型打交道。她不仅主导设计了Claude的性格、对齐与价值观机制,还总结出一些行之有效的提示词技巧。哲学在AI时代不仅没有落伍,反而那些通过哲学训练掌握提示词技巧的人,年薪中位数可以高达15万美元。