
10个小模型并联跑赢GPT-4.1!无额外训练,方法仅4步
10个小模型并联跑赢GPT-4.1!无额外训练,方法仅4步近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
在今年 ICLR 会议上,我们被问到最多且最有意思的问题是:像 Jina AI 这样的向量搜索模型提供商,除了在 MTEB 上做基准测试,会不会做些氛围测试 (Vibe-testing)?
好家伙,AI意外生成的内核(kernel),性能比人类专家专门优化过的还要好!
GPT-4o-Image也只能完成28.9%的任务,图像编辑评测新基准来了!360个全部由人类专家仔细思考并校对的高质量测试案例,暴露多模态模型在结合推理能力进行图像编辑时的短板。
现在,请大家一起数一下“1”、“2”。OK,短短2秒钟时间,一个准万亿MoE大模型就已经吃透如何解一道高等数学大题了!而且啊,这个大模型还是不用GPU来训练,全流程都是大写的“国产”的那种。
就在刚刚,中兴通讯星云大模型获推理榜总分第一,总榜并列第二!而在数学推理、科学推理、代码生成的细分赛道上,它同样表现抢眼。更难得的是,它是业内少数通过国家级权威安全认证的大模型。
文章以第一人称视角,讲述一名AI自媒体博主因行业竞争与技术迭代陷入深度焦虑的过程,最终通过反思意识到焦虑源于攀比与生存恐惧,而非技术本身。核心观点是接纳自身局限、明确独特价值、转向合作与好奇驱动,并提出三条实用建议,强调应对AI焦虑需聚焦个人定位而非盲目追赶。
豆包、文心一言、DeepSeek、元宝……这些国产AI工具,正在大规模进入职场内容流里。我们以为它们是工具,其实它们更像是一种“说得太像真的语气”,让每个使用者都可能在不经意间交出判断力。
文章探讨AI时代深度思考的困境:大语言模型使人类思维系统萎缩,即时生成内容取代有机思考过程,削弱直觉与思辨力。作者以自身创作瓶颈为例,指出依赖AI导致认知基础流失,廉价知识无法替代深层理解,强调原始思考过程的价值,认为未经修饰的人类思考仍有独特意义。
多模态大模型(MLLM)在静态图像上已经展现出卓越的 OCR 能力,能准确识别和理解图像中的文字内容。MME-VideoOCR 致力于系统评估并推动MLLM在视频OCR中的感知、理解和推理能力。