首个实例理解3D重建模型!NTU&阶越提出基于实例解耦的3D重建模型,助理场景理解
首个实例理解3D重建模型!NTU&阶越提出基于实例解耦的3D重建模型,助理场景理解现在,NTU联合StepFun提出了IGGT (Instance-Grounded Geometry Transformer) ,一个创新的端到端大型统一Transformer,首次将空间重建与实例级上下文理解融为一体。
现在,NTU联合StepFun提出了IGGT (Instance-Grounded Geometry Transformer) ,一个创新的端到端大型统一Transformer,首次将空间重建与实例级上下文理解融为一体。
厦门大学和腾讯合作的最新论文《FlashWorld: High-quality 3D Scene Generation within Seconds》获得了海内外的广泛关注,在当日 Huggingface Daily Paper 榜单位列第一,并在 X 上获得 AK、Midjourney 创始人、SuperSplat 创始人等 AI 大佬点赞转发。
3D点云异常检测对制造、打印等领域至关重要,可传统方法常丢细节、难修复。上海科大与密歇根大学携手打造PASDF框架,借助「姿态对齐+连续表征」技术,达成检测修复一体化,实验显示其精准又稳定。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。
在3D内容创作领域,如何像玩乐高一样,自由生成、编辑和组合对象的各个部件,一直是一个核心挑战。香港大学、VAST、哈尔滨工业大学及浙江大学的研究者们联手,推出了一个名为 OmniPart 的全新框架,巧妙地解决了这一难题。该研究已被计算机图形学顶会 SIGGRAPH Asia 2025 接收。
创建具有高度真实感的三维数字人,在三维影视制作、游戏开发以及虚拟/增强现实(VR/AR)等多个领域均有着广泛且重要的应用。
生成式 AI 正在重写 3D 内容的生产流程:从“DCC 工具 + 外包”的线性供给,演进到“资产规模化生成 + 管线可用”的指数供给模式。过去五年,技术范式经历了从实时体积渲染,NeRF,到Score Distillation,3D扩散的快速迭代;需求侧则由游戏与影视,向3D 打印、电商样机、数字人、教育培训、以及AR/VR等长尾场景外溢。
该研究首次提出了含可移动物体的 3D 场景中,基于文本的人 - 物交互生成任务,并构建了大规模数据集与创新方法框架,在多个评测指标上均取得了领先效果。
Meta开源DepthLM,首证视觉语言模型无需改架构即可媲美纯视觉模型的3D理解能力。通过视觉提示、稀疏标注等创新策略,DepthLM精准完成像素级深度估计等任务,解锁VLM多任务处理潜力,为自动驾驶、机器人等领域带来巨大前景。
一张图,一个3D世界!今天,李飞飞团队重磅放出实时生成世界模型「RTFM」,通过端到端学习大规模视频数据,直接从输入2D图像生成同一场景下新视角的图像。值得一提的是,它仅需单块H100 GPU便能实时渲染出持久且3D一致的世界。