
ACL'25最佳论文独家解读:大模型有「抗改造」基因,现有后训练范式失灵预警
ACL'25最佳论文独家解读:大模型有「抗改造」基因,现有后训练范式失灵预警尽管全球科技界正热烈庆祝 GPT-4、DeepSeek 等大模型展现出的惊艳能力,但一个根本性问题仍未被真正解决: 这些 AI 模型是否真正理解人类的指令与意图?
尽管全球科技界正热烈庆祝 GPT-4、DeepSeek 等大模型展现出的惊艳能力,但一个根本性问题仍未被真正解决: 这些 AI 模型是否真正理解人类的指令与意图?
大语言模型(LLM)已经在多项自然语言处理任务中展现出卓越能力,但其潜在安全风险仍然是阻碍规模化落地的关键瓶颈。目前社区用于安全对齐的公开数据集,往往偏重于「词汇多样性」,即让同一种风险指令尽可能用不同的表达方式出现,却很少系统考虑指令背后的「恶意意图多样性」以及「越狱策略多样性」。
在ACL 2025的颁奖典礼上,由DeepSeek梁文锋作为通讯作者、与北京大学等联合发表的论文荣获最佳论文奖。 这次ACL 2025规模空前,总投稿量达到8360篇,相较于去年的4407篇几乎翻倍,竞争异常激烈 。
ACL 是计算语言学和自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。一直以来,ACL 在 NLP 领域的学术影响力都位列第一,它也是 CCF-A 类推荐会议。今年的 ACL 大会已是第 63 届,于 2025 年 7 月 27 日至 8 月 1 日在奥地利维也纳举行。
昨晚,自然语言处理顶会 ACL 公布了今年的一个特别奖项 —— 计算语言学博士论文奖。
只需一次指令微调,即可让普通大模型变身“全能专家天团”?
近年来,大型语言模型(LLMs)在复杂推理任务中展现出惊人的能力,这在很大程度上得益于过程级奖励模型(PRMs)的赋能。PRMs 作为 LLMs 进行多步推理和决策的关键「幕后功臣」,负责评估推理过程的每一步,以引导模型的学习方向。
怎么快速判断一个生成模型好不好? 最直接的办法当然是 —— 去问一位做图像生成、视频生成、或者专门做评测的朋友。他们懂技术、有经验、眼光毒辣,能告诉你模型到底强在哪、弱在哪,适不适合你的需求。
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
通过“视觉神经增强”机制,直接放大模型中的视觉关键注意力头输出,显著降低模型的幻觉现象。