速递|Perplexity收购红杉资本支持的,AI设计初创公司Visual Electric
速递|Perplexity收购红杉资本支持的,AI设计初创公司Visual Electric红杉资本支持的AI 设计初创公司 Visual Electric 宣布,其团队今日将加入搜索初创企业 Perplexity。该公司在官网上表示,团队将并入 Perplexity 新成立的"智能体体验部门"。Perplexity 首席执行官 Aravind Srinivas 在 X 平台发文确认了此次收购。
红杉资本支持的AI 设计初创公司 Visual Electric 宣布,其团队今日将加入搜索初创企业 Perplexity。该公司在官网上表示,团队将并入 Perplexity 新成立的"智能体体验部门"。Perplexity 首席执行官 Aravind Srinivas 在 X 平台发文确认了此次收购。
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
Supermemory 已获得由 Susa Ventures、Browder Capital 和 SF1.vc 领投的 260 万美元种子轮融资。此轮融资还包括 Cloudflare 的 Knecht、谷歌人工智能负责人 Jeff Dean、DeepMind 产品经理 Logan Kilpatrick、Sentry 创始人 David Cramer 以及来自 OpenAI、
来自 UIUC 与 Salesforce 的研究团队提出了一套系统化方案:UserBench —— 首次将 “用户特性” 制度化,构建交互评测环境,用于专门检验大模型是否真正 “懂人”;UserRL —— 在 UserBench 及其他标准化 Gym 环境之上,搭建统一的用户交互强化学习框架,并系统探索以用户为驱动的奖励建模。
斯坦福大学研究人员提出了Paper2Agent,将静态论文转化为可交互的AI智能体,让学术成果可以直接被「调用」,为科研知识传播开辟了新模式,并为构建AI共研生态奠定基础。
该团队 2025 年的研究《Reasoning by superposition: A theoretical perspective on chain of continuous thought》已从理论上指出,连续思维链的一个关键优势在于它能使模型在叠加(superposition)状态下进行推理:当模型面对多个可能的推理路径而无法确定哪一个是正确时,它可以在连续空间中并行地保留所有可能的路
基于多模态大模型语义理解能力的统一多模态嵌入模型UniME-V2。该方法首先通过全局检索构建潜在困难负例集,随后创新性地引入“MLLM-as-a-Judge”机制:利用MLLM对查询-候选对进行语义对齐评估,生成软语义匹配分数。
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
“TreeSynth” 就这样起源于作者们最初的构想:“如何通过一句任务描述生成海量数据,完成模型训练?” 同时,大规模 scalibility 对合成数据的多样性提出了新的要求。
Thinking Machines Lab发布首个产品:Thinker,让模型微调变得像改Python代码一样简单。也算是终于摘掉了“0产品0收入估值840亿”的帽子。Tinker受到了业界的密切关注。AI基础设施公司Anyscale的CEO Robert Nishihara等beta测试者表示,尽管市面上有其他微调工具,但Tinker在“抽象化和可调性之间取得了卓越的平衡”